Pediatric Nephrology

, Volume 26, Issue 9, pp 1535–1543

Wilms tumor—a renal stem cell malignancy?

Review

Abstract

Wilms’ tumor (WT; nephroblastoma) is the most common pediatric renal malignancy and rated fourth in overall incidence among childhood cancers. It is viewed as a prototype of differentiation failure in human neoplasia as it recapitulates the histology of the nephrogenic zone of the growing fetal kidney. The cellular origin of WT is unclear. However, recent genomic, genetic and epigenetic studies point to an early renal stem/progenitor cell that undergoes malignant transformation as the source for WT. In this context, classical WT shares genes and pathways activated in progenitors committed to the renal lineage. However, direct proof and characterization of the WT initiating cell have remained elusive. Novel methodologies recently adopted from the cancer stem cell scientific field, including the analysis of sorted single human tumor cells, have been applied to WT. These have enabled the identification of cell sub-populations that show similarities—in terms of molecular marker expression—to human fetal kidney progenitors and are, therefore, likely to be derivatives of the same lineage. Further elucidation of the WT cancer stem cell or the cell of origin in human tumors and in transgenic mouse models that generate murine tumors may not only provide novel therapeutic targets but also shed light on the normal kidney stem cell.

Keywords

Wilms tumor Nephroblastoma Embryonic cancer Stem cells Cancer stem cells Renal stem cells Children 

References

  1. 1.
    Rivera MN, Haber DA (2005) Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 5:699–712PubMedCrossRefGoogle Scholar
  2. 2.
    Little M (2005) Wilms’ tumor: starting off the kidney all over again? Prog Mol Subcell Biol 40:107–132PubMedCrossRefGoogle Scholar
  3. 3.
    Hartman DJ, MacLennan GT (2005) Wilms tumor. J Urol 173:2147PubMedCrossRefGoogle Scholar
  4. 4.
    Kioumehr F, Cochran ST, Layfield L, Yaghmai I, Ngo C, Smith SR (1989) Wilms tumor (nephroblastoma) in the adult patient: clinical and radiologic manifestations. Am J Roentgenol 152:299–302Google Scholar
  5. 5.
    Kaste SC, Dome JS, Babyn PS, Graf NM, Grundy P, Godzinski J, Levitt GA, Jenkinson H (2008) Wilms tumour: prognostic factors, staging, therapy and late effects. Pediatr Radiol 38:2–17PubMedCrossRefGoogle Scholar
  6. 6.
    Kalapurakal JA, Dome JS, Perlman EJ, Malogolowkin M, Haase GM, Grundy P, Coppes MJ (2004) Management of Wilms’ tumour: current practice and future goals. Lancet Oncol 5:37–46PubMedCrossRefGoogle Scholar
  7. 7.
    Robison LL (2005) The Childhood Cancer Survivor Study: a resource for research of long-term outcomes among adult survivors of childhood cancer. Minn Med 88:45–49PubMedGoogle Scholar
  8. 8.
    Geenen MM, Cardous-Ubbink MC, Kremer LC, van den Bos C, van der Pal HJ, Heinen RC, Jaspers MW, Koning CC, Oldenburger F, Langeveld NE, Hart AA, Bakker PJ, Caron HN, van Leeuwen FE (2007) Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. JAMA 297:2705–2715PubMedCrossRefGoogle Scholar
  9. 9.
    Velasco S, D'Amico D, Schneider NR, Timmons C, Chappell E, Lee D, Nisen PD (1993) Molecular and cellular heterogeneity of Wilms’ tumor. Int J Cancer 53:672–679PubMedCrossRefGoogle Scholar
  10. 10.
    Brown KW, Malik KT (2001) The molecular biology of Wilms tumour. Expert Rev Mol Med 2001:1–16PubMedGoogle Scholar
  11. 11.
    Coppes MJ, Pritchard-Jones K (2000) Principles of Wilms’ tumor biology. Urol Clin North Am 27:423–433, viiiPubMedCrossRefGoogle Scholar
  12. 12.
    Roth J, Zuber C, Wagner P, Blaha I, Bitter-Suermann D, Heitz PU (1988) Presence of the long chain form of polysialic acid of the neural cell adhesion molecule in Wilms’ tumor. Identification of a cell adhesion molecule as an oncodevelopmental antigen and implications for tumor histogenesis. Am J Pathol 133:227–240PubMedGoogle Scholar
  13. 13.
    Hennigar RA, Garvin AJ, Hazen-Martin DJ, Schulte BA (1989) Immunohistochemical localization of transport mediators in Wilms’ tumor: comparison with fetal and mature human kidney. Lab Invest 61:192–201PubMedGoogle Scholar
  14. 14.
    Herzlinger D (1994) Renal stem cells and the lineage of the nephron. Annu Rev Physiol 56:671–689PubMedCrossRefGoogle Scholar
  15. 15.
    Li CM, Guo M, Borczuk A, Powell CA, Wei M, Thaker HM, Friedman R, Klein U, Tycko B (2002) Gene expression in Wilms’ tumor mimics the earliest committed stage in the metanephric mesenchymal–epithelial transition. Am J Pathol 160:2181–2190PubMedCrossRefGoogle Scholar
  16. 16.
    Dekel B, Metsuyanim S, Schmidt-Ott KM, Fridman E, Jacob-Hirsch J, Simon A, Pinthus J, Mor Y, Barasch J, Amariglio N, Reisner Y, Kaminski N, Rechavi G (2006) Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res 66:6040–6049PubMedCrossRefGoogle Scholar
  17. 17.
    Aiden AP, Rivera MN, Rheinbay E, Ku M, Coffman EJ, Truong TT, Vargas SO, Lander ES, Haber DA, Bernstein BE (2010) Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. Cell Stem Cell 6:591–602PubMedCrossRefGoogle Scholar
  18. 18.
    Metsuyanim S, Pode-Shakked N, Schmidt-Ott KM, Keshet G, Rechavi G, Blumental D, Dekel B (2008) Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 26:1808–1817PubMedCrossRefGoogle Scholar
  19. 19.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  20. 20.
    van der Kooy D, Weiss S (2000) Why stem cells? Science 287:1439–1441PubMedCrossRefGoogle Scholar
  21. 21.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  22. 22.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  23. 23.
    Galmozzi E, Facchetti F, La Porta CA (2006) Cancer stem cells and therapeutic perspectives. Curr Med Chem 13:603–607PubMedCrossRefGoogle Scholar
  24. 24.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMedCrossRefGoogle Scholar
  25. 25.
    Dekel B (2003) Profiling gene expression in kidney development. Nephron Exp Nephrol 95:e1–e6PubMedCrossRefGoogle Scholar
  26. 26.
    Stuart RO, Bush KT, Nigam SK (2001) Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 98:5649–5654PubMedCrossRefGoogle Scholar
  27. 27.
    Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS (2003) A catalogue of gene expression in the developing kidney. Kidney Int 64:1588–1604PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, Bottinger E, Barasch J (2005) Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol 16:1993–2002PubMedCrossRefGoogle Scholar
  29. 29.
    Dekel B, Amariglio N, Kaminski N, Schwartz A, Goshen E, Arditti FD, Tsarfaty I, Passwell JH, Reisner Y, Rechavi G (2002) Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol 13:977–990PubMedGoogle Scholar
  30. 30.
    Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Yu J, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15:781–791PubMedCrossRefGoogle Scholar
  31. 31.
    Wen JG, van Steenbrugge GJ, Egeler RM, Nijman RM (1997) Progress of fundamental research in Wilms' tumor. Urol Res 25:223–230PubMedCrossRefGoogle Scholar
  32. 32.
    Garvin AJ, Congleton L, Inabnett T, Gansler T, Sens DA (1988) Growth characteristics of human Wilms’ tumor in nude mice. Pediatr Pathol 8:599–615PubMedCrossRefGoogle Scholar
  33. 33.
    Gong KQ, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27:7661–7668PubMedCrossRefGoogle Scholar
  34. 34.
    Oliver JA, Barasch J, Yang J, Herzlinger D, Al-Awqati Q (2002) Metanephric mesenchyme contains embryonic renal stem cells. Am J Physiol Renal Physiol 283:F799–F809PubMedGoogle Scholar
  35. 35.
    Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691PubMedCrossRefGoogle Scholar
  36. 36.
    Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45PubMedCrossRefGoogle Scholar
  37. 37.
    Rothenpieler UW, Dressler GR (1993) Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development 119:711–720PubMedGoogle Scholar
  38. 38.
    Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedCrossRefGoogle Scholar
  39. 39.
    Barasch J, Yang J, Ware CB, Taga T, Yoshida K, Erdjument-Bromage H, Tempst P, Parravicini E, Malach S, Aranoff T, Oliver JA (1999) Mesenchymal to epithelial conversion in rat metanephros is induced by LIF. Cell 99:377–386PubMedCrossRefGoogle Scholar
  40. 40.
    Assou S, Le Carrour T, Tondeur S, Strom S, Gabelle A, Marty S, Nadal L, Pantesco V, Reme T, Hugnot JP, Gasca S, Hovatta O, Hamamah S, Klein B, De Vos J (2007) A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25:961–973PubMedCrossRefGoogle Scholar
  41. 41.
    Cui H, Ma J, Ding J, Li T, Alam G, Ding HF (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281:34696–34704PubMedCrossRefGoogle Scholar
  42. 42.
    Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24PubMedGoogle Scholar
  43. 43.
    Li CM, Kim CE, Margolin AA, Guo M, Zhu J, Mason JM, Hensle TW, Murty VV, Grundy PE, Fearon ER, D'Agati V, Licht JD, Tycko B (2004) CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms' tumors. Am J Pathol 165:1943–1953PubMedCrossRefGoogle Scholar
  44. 44.
    Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51PubMedCrossRefGoogle Scholar
  45. 45.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefGoogle Scholar
  46. 46.
    Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856PubMedCrossRefGoogle Scholar
  47. 47.
    Tycko B, Li CM, Buttyan R (2007) The Wnt/beta-catenin pathway in wilms tumors and prostate cancers. Curr Mol Med 7:479–489PubMedCrossRefGoogle Scholar
  48. 48.
    Uschkereit C, Perez N, de Torres C, Kuff M, Mora J, Royer-Pokora B (2007) Different CTNNB1 mutations as molecular genetic proof for the independent origin of four Wilms tumours in a patient with a novel germ line WT1 mutation. J Med Genet 44:393–396PubMedCrossRefGoogle Scholar
  49. 49.
    Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, Mehra R, Wang X, Ghosh D, Shah RB, Varambally S, Pienta KJ, Chinnaiyan AM (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, Perantoni AO (2001) Secreted Frizzled-related proteins can regulate metanephric development. Mech Dev 102:45–55PubMedCrossRefGoogle Scholar
  51. 51.
    Herzlinger D (1995) Inductive interactions during kidney development. Semin Nephrol 15:255–262PubMedGoogle Scholar
  52. 52.
    Noguera R, Villamon E, Berbegall A, Machado I, Giner F, Tadeo I, Navarro S, Llombart-Bosch (2010) A gain of MYCN region in a Wilms tumor-derived xenotransplanted cell line. Diagn Mol Pathol 19:33–39PubMedCrossRefGoogle Scholar
  53. 53.
    Takahashi M, Yang XJ, Lavery TT, Furge KA, Williams BO, Tretiakova M, Montag A, Vogelzang NJ, Re GG, Garvin AJ, Soderhall S, Kagawa S, Hazel-Martin D, Nordenskjold A, The BT (2002) Gene expression profiling of favorable histology Wilms tumors and its correlation with clinical features. Cancer Res 62:6598–6605PubMedGoogle Scholar
  54. 54.
    Feinberg AP (2007) An epigenetic approach to cancer etiology. Cancer J 13:70–74PubMedCrossRefGoogle Scholar
  55. 55.
    Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33PubMedCrossRefGoogle Scholar
  56. 56.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181PubMedCrossRefGoogle Scholar
  57. 57.
    Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, Oliver G (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228PubMedCrossRefGoogle Scholar
  58. 58.
    Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28:117–127PubMedCrossRefGoogle Scholar
  59. 59.
    Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, D'Agati V, Costantini F (2005) The role of GDNF in patterning the excretory system. Dev Biol 283:70–84PubMedCrossRefGoogle Scholar
  60. 60.
    Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8:65–74PubMedCrossRefGoogle Scholar
  61. 61.
    Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292PubMedCrossRefGoogle Scholar
  62. 62.
    Park JS, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134:2533–2539PubMedCrossRefGoogle Scholar
  63. 63.
    Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8:791–802PubMedCrossRefGoogle Scholar
  64. 64.
    Wegert J, Wittmann S, Leuschner I, Geissinger E, Graf N, Gessler M (2009) WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes Chromosomes Cancer 48:1102–1111PubMedCrossRefGoogle Scholar
  65. 65.
    Corbin M, de Reynies A, Rickman DS, Berrebi D, Boccon-Gibod L, Cohen-Gogo S, Fabre M, Jaubert F, Faussillon M, Yilmaz F, Sarnacki S, Landman-Parker J, Patte C, Schleiermacher G, Antignac C, Jeanpierre C (2009) WNT/beta-catenin pathway activation in Wilms tumors: a unifying mechanism with multiple entries? Genes Chromosomes Cancer 48:816–827PubMedCrossRefGoogle Scholar
  66. 66.
    Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98PubMedCrossRefGoogle Scholar
  67. 67.
    Schumacher V, Schuhen S, Sonner S, Weirich A, Leuschner I, Harms D, Licht J, Roberts S, Royer-Pokora B (2003) Two molecular subgroups of Wilms' tumors with or without WT1 mutations. Clin Cancer Res 9:2005–2014PubMedGoogle Scholar
  68. 68.
    Royer-Pokora B, Busch M, Beier M, Duhme C, de Torres C, Mora J, Brandt A, Royer HD (2010) Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum Mol Genet 19:1651–1668PubMedCrossRefGoogle Scholar
  69. 69.
    Fukuzawa R, Anaka MR, Weeks RJ, Morison IM, Reeve AE (2009) Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene 28:1063–1075PubMedCrossRefGoogle Scholar
  70. 70.
    Weissman IL (2005) Normal and neoplastic stem cells. Novartis Found Symp 265:35–50, discussion 50–34, 92–37PubMedCrossRefGoogle Scholar
  71. 71.
    Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H, Pahlman S (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 99:7021–7026PubMedCrossRefGoogle Scholar
  72. 72.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCrossRefGoogle Scholar
  73. 73.
    Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101:11839–11844PubMedCrossRefGoogle Scholar
  74. 74.
    Metsuyanim S, Harari-Steinberg O, Buzhor E, Omer D, Pode-Shakked N, Ben-Hur H, Halperin R, Schneider D, Dekel B (2009) Expression of stem cell markers in the human fetal kidney. PLoS ONE 4:e6709PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  1. 1.Pediatric Stem Cell Research Institute, Edmond & Lili Safra Children’s HospitalSheba Center for Regenerative Medicine, Chaim Sheba Medical Center, Sackler School of Medicine, Tel Aviv UniversityTel AvivIsrael

Personalised recommendations