Pediatric Nephrology

, Volume 27, Issue 2, pp 207–222 | Cite as

Hyperammonemia in review: pathophysiology, diagnosis, and treatment

Educational Review

Abstract

Ammonia is an important source of nitrogen and is required for amino acid synthesis. It is also necessary for normal acid-base balance. When present in high concentrations, ammonia is toxic. Endogenous ammonia intoxication can occur when there is impaired capacity of the body to excrete nitrogenous waste, as seen with congenital enzymatic deficiencies. A variety of environmental causes and medications may also lead to ammonia toxicity. Hyperammonemia refers to a clinical condition associated with elevated ammonia levels manifested by a variety of symptoms and signs, including significant central nervous system (CNS) abnormalities. Appropriate and timely management requires a solid understanding of the fundamental pathophysiology, differential diagnosis, and treatment approaches available. The following review discusses the etiology, pathogenesis, differential diagnosis, and treatment of hyperammonemia.

Keywords

Hyperammonemia Dialysis Urea cycle defects Treatment Pathophysiology 

Notes

References

  1. 1.
    Walker V (2009) Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diab Obes Metab 1(9):823–385CrossRefGoogle Scholar
  2. 2.
    Tizianello A, Deferrari G, Garibotto G, Robaudo C, Acquarone N, Ghiggeri GM (1982) Renal ammoniagenesis in an early stage of metabolic acidosis in man. J Clin Invest 69(1):240–250PubMedCrossRefGoogle Scholar
  3. 3.
    Windmueller HG, Spaeth AE (1980) Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. J Biol Chem 255:107–112PubMedGoogle Scholar
  4. 4.
    Singh RH (2007) Nutritional management of patients with urea cycle disorders. J Inherit Metab Dis 30:880–887PubMedCrossRefGoogle Scholar
  5. 5.
    Cooper AJ, Plum P (1987) Biochemistry and physiology of brain ammonia. Physiol Rev 67:440–519PubMedGoogle Scholar
  6. 6.
    Batshaw ML (1984) Hyperammonemia. Curr Probl Pediatr 14(11):1–69PubMedCrossRefGoogle Scholar
  7. 7.
    Schlienger JL, Imler M (1978) Effect of hyperammonemia on insulin-mediated glucose uptake in rats. Metabolism 27(2):175–183PubMedCrossRefGoogle Scholar
  8. 8.
    Gropman AL, Summar M, Leonard JV (2007) Neurological implications of urea cycle disorders. J Inherit Metab Dis 30:865–869PubMedCrossRefGoogle Scholar
  9. 9.
    Enns GM (2008) Neurologic damage and neurocognitive dysfunction in urea cycle disorders. Semin Pediatr Neurol 15:132–139PubMedCrossRefGoogle Scholar
  10. 10.
    Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED (1984) Neurologic outcome in children with inborn errors of urea synthesis. Outcome of ureacycle enzymopathies. N Engl J Med 7(310 (23)):1500–1505CrossRefGoogle Scholar
  11. 11.
    Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A (2007) Survival after Treatment with Phenylacetate and Benzoate for Urea-Cycle Disorders. N Engl J Med 356:2282–2292PubMedCrossRefGoogle Scholar
  12. 12.
    Butterworth RF (1998) Effects of hyperammonaemia on brain function. J Inherit Metab Dis 21(suppl 1):6–20PubMedCrossRefGoogle Scholar
  13. 13.
    Pela I, Seracini D, Donati MA, Lavoratti G, Pasquini E, Materassi M (2008) Peritoneal dialysis in neonates with inborn errors of metabolism: is it really out of date? Pediatr Nephrol 23(1):163–168PubMedCrossRefGoogle Scholar
  14. 14.
    Msall M, Monahan PS, Chapanis N, Batshaw ML (1988) Cognitive development in children with inborn errors of urea synthesis. Acta Paediatr Jpn 30:435–441PubMedGoogle Scholar
  15. 15.
    Strauss KA, Puffenberger EG, Morton DH (2009) Maple Syrup Urine Disease. In: Pagon RA, Bird TC, Dolan CR, Stephens K, eds. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2006 Jan 30 [updated 2009 Dec 15] Google Scholar
  16. 16.
    Bunchman TE, Barletta GM, Winters JW, Gardner JJ, Crumb TL, McBryde KD (2007) Phenylacetate and benzoate clearance in a hyperammonemic infant on sequential hemodialysis and hemofiltration. Pediatr Nephrol 22:1062–1065PubMedCrossRefGoogle Scholar
  17. 17.
    Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100(Suppl 1):S3–S12PubMedCrossRefGoogle Scholar
  18. 18.
    Takanashi J, Barkovich AJ, Cheng SF, Weisiger K, Zlatunich CO, Mudge C, Rosenthal P, Tuchman M, Packman S (2003) Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. Am J Neuroradiol 24:1184–1187PubMedGoogle Scholar
  19. 19.
    Filloux F, Townsend JJ, Leonard C (1986) Ornithine transcarbamylase deficiency: neuropathologic changes acquired in utero. J Pediatr 108:942–945PubMedCrossRefGoogle Scholar
  20. 20.
    Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV (1993) Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 33:77–81PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper AJ (2001) Role of glutamine in cerebral nitrogen metabolism and ammonia neurotoxicity. Ment Retard Dev Disabil Res Rev 7:280–286PubMedCrossRefGoogle Scholar
  22. 22.
    Heins J, Zwingmann C (2010) Organic osmolytes in hyponatremia and ammonia toxicity. Metab Brain Dis 25(1):81–89PubMedCrossRefGoogle Scholar
  23. 23.
    Scaglia F, Brunetti-Pierri N, Kleppe S, Marini J, Carter S, Garlick P, Jahoor F, O’Brien W, Lee B (2004) Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. J Nutr 134:2775S–2782SPubMedGoogle Scholar
  24. 24.
    Inoue I, Gushiken T, Kobayashi K, Saheki T (1987) Accumulation of large neutral amino acids in the brain of sparse-fur mice at hyperammonemic state. Biochem Med Metab Biol 38:378–386PubMedCrossRefGoogle Scholar
  25. 25.
    Batshaw ML, Robinson MB, Hyland K, Djali S, Heyes MP (1993) Quinolinic acid in children with congenital hyperammonemia. Ann Neurol 34:676–681PubMedCrossRefGoogle Scholar
  26. 26.
    Rodrigo R, Cauli O, Boix J, El Mlili N, Agusti A, Felipo V (2009) Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem Int 55:113–118PubMedCrossRefGoogle Scholar
  27. 27.
    Schwarcz R, Köhler C (1983) Differential vulnerability of central neurons of the rat to quinolinic acid. Neurosci Lett 38:85–90PubMedCrossRefGoogle Scholar
  28. 28.
    Rose C (2006) Effect of ammonia on astrocytic glutamate uptake/release mechanisms. J Neurochem 97(suppl 1):11–15PubMedCrossRefGoogle Scholar
  29. 29.
    Rao KV, Qureshi IA (1999) Reduction in the MK-801 binding sites of the NMDA sub-type of glutamate receptor in a mouse model of congenital hyperammonemia: prevention by acetyl-L-carnitine. Neuropharmacology 38:383–394PubMedCrossRefGoogle Scholar
  30. 30.
    Cauli O, Rodrigo R, Llansola M, Montoliu C, Monfort P, Piedrafita B, El Mlili N, Boix J, Agusti A, Felipo V (2009) Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metab Brain Dis 24:69–80PubMedCrossRefGoogle Scholar
  31. 31.
    Ratnakumari L, Qureshi IA, Butterworth RF (1994) Evidence for cholinergic neuronal loss in brain in congenital ornithine transcarbamylase deficiency. Neurosci Lett 178:63–65PubMedCrossRefGoogle Scholar
  32. 32.
    Robinson MB, Anegawa NJ, Gorry E, Qureshi IA, Coyle JT, Lucki I, Batshaw ML (1992) Brain serotonin 2 and serotonin 1A receptors are altered in the congenitally hyperammonemic sparse fur mouse. J Neurochem 58:1016–1022PubMedCrossRefGoogle Scholar
  33. 33.
    Bachmann C, Colombo JP (1984) Increase of tryptophan and 5-hydroxyindole acetic acid in the brain of ornithine carbamoyltransferase deficient sparse-fur mice. Pediatr Res 18:372–375PubMedCrossRefGoogle Scholar
  34. 34.
    Hyman SL, Coyle JT, Parke JC, Porter C, Thomas GH, Jankel W, Batshaw ML (1986) Anorexia and altered serotonin metabolism in a patient with argininosuccinic aciduria. J Pediatr 108:705–709PubMedCrossRefGoogle Scholar
  35. 35.
    Rao KV, Mawal YR, Qureshi IA (1997) Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci Lett 224:83–86PubMedCrossRefGoogle Scholar
  36. 36.
    Zanelli SA, Solenski NJ, Rosenthal RE, Fiskum G (2005) Mechanisms of ischemic neuroprotection by acetyl-L-carnitine. Ann NY Acad Sci 1053:153–161PubMedCrossRefGoogle Scholar
  37. 37.
    Braissant O, Cagnon L, Monnet-Tschudi F, Speer O, Wallimann T, Honegger P, Henry H (2008) Ammonium alters creatine transport and synthesis in a 3D-culture of developing brain cells, resulting in secondary cerebral creatine deficiency. Eur J Neurosci 27:1673–1685PubMedCrossRefGoogle Scholar
  38. 38.
    Braissant O, Henry H, Villard AM, Zurich MG, Loup M, Eilers B, Parlascino G, Matter E, Boulat O, Honegger P, Bachmann C (2002) Ammonium induced impairment of axonal growth is prevented through glial creatine. J Neurosci 22:9810–9820PubMedGoogle Scholar
  39. 39.
    Cagnon L, Braissant O (2009) CNTF protects oligodendrocytes from ammonia toxicity: intracellular signaling pathways involved. Neurobiol Dis 33:133–142PubMedCrossRefGoogle Scholar
  40. 40.
    Jayakumar AR, Panickar KS, Murthy C, Norenberg MD (2006) Oxidative stress and mitogen-activated protein kinase phosphorylation mediate ammonia induced cell swelling and glutamate uptake inhibition in cultured astrocytes. J Neurosci 26:4774–4784PubMedCrossRefGoogle Scholar
  41. 41.
    Lichter-Konecki U, Mangin JM, Gordish-Dressman H, Hoffman EP, Gallo V (2008) Gene expression profiling of astrocytes from hyperammonemic mice reveals altered pathways for water and potassium homeostasis in vivo. Glia 56:365–377PubMedCrossRefGoogle Scholar
  42. 42.
    Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24(1):95–102PubMedCrossRefGoogle Scholar
  43. 43.
    Walters S, Brophy PD (2009) Inborn errors of metabolism and continuous renal replacement therapy. In: Ronco C, Bellomo R, Kellum J (eds) Critical care nephrology, 2nd edn. Elsevier, Oxford, pp 1630–1633Google Scholar
  44. 44.
    Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, Kerr DS, Diaz GA, Seashore MR, Lee HS, McCarter RJ, Krischer JP, Batshaw ML (2008) Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab 94:397–402PubMedCrossRefGoogle Scholar
  45. 45.
    Summar ML (2005) Urea Cycle Disorders Overview. In: Pagon RA, Bird TC, Dolan CR, Stephens K, eds. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2003 Apr 29 [updated 2005 Aug 11] Google Scholar
  46. 46.
    Lo WD, Sloan HR, Sotos JF, Klinger RJ (1993) Late Clinical Presentation of Partial Carbamyl Phosphate Synthetase I Deficiency. Am J Dis Child 147(3):267–269PubMedGoogle Scholar
  47. 47.
    Arranz JA, Riudor E, Marco-Marín C, Rubio V (2007) Estimation of the total number of disease-causing mutations in ornithine transcarbamylase (OTC) deficiency Value of the OTC structure in predicting a mutation pathogenic potential. J Inherit Metab Dis 30(2):217–226PubMedCrossRefGoogle Scholar
  48. 48.
    Brusilow SW, Maestri NE (1996) Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr 43:127–170PubMedGoogle Scholar
  49. 49.
    Rajantie J, Simell O, Perheentupa J (1981) Lysinuric protein intolerance: basolateral transport effect in renal tubuli. J Clin Invest 67:1078–1082PubMedCrossRefGoogle Scholar
  50. 50.
    Adams EN, Marks A, Lizer MH (2009) Carbamazepine-induced hyperammonemia. Am J Health Syst Pharm 66(16):1468–1470PubMedCrossRefGoogle Scholar
  51. 51.
    Ambrosetto G, Riva R, Baruzzi A (1984) Hyperammonemia in asterixis induced by carbamazepine: two case reports. Acta Neurol Scand 69:186–189PubMedCrossRefGoogle Scholar
  52. 52.
    Rivelli M, El-Mallakh RS, Nelson WH (1988) Carbamazepine-associated asterixis and hyperammonemia. Am J Psychiatry 145:269–270PubMedGoogle Scholar
  53. 53.
    Segura-Bruna N, Rodriguez-Campello A, Puente V, Roquer J (2006) Valproate-induced hyperammonemic encephalopathy. Acta Neurol Scand 114:1–7PubMedCrossRefGoogle Scholar
  54. 54.
    Raskind JY, El-Chaar GM (2000) The role of carnitine supplementation during valproic acid therapy. Ann Pharmacother 34:630–638PubMedCrossRefGoogle Scholar
  55. 55.
    Deutsch SI, Burket JA, Rosse RB (2009) Valproate-induced hyperammonemic encephalopathy and normal liver functions: possible synergism with topiramate. Clin Neuropharmacol 32(6):350–352PubMedCrossRefGoogle Scholar
  56. 56.
    Kamoun P, Rabier D (1987) Valproate induced inhibition of urea synthesis. Lancet 1:48PubMedCrossRefGoogle Scholar
  57. 57.
    Hamer HM, Knake S, Schomburg U, Rosenow F (2000) Valproate-induced hyperammonemic encephalopathy in the presence of topiramate. Neurology 54:230–232PubMedGoogle Scholar
  58. 58.
    Knudsen JF, Sokol GH, Flowers CM (2008) Adjunctive topiramate enhances the risk of hypothermia associated with valproic acid therapy. J Clin Pharm Ther 33:513–519PubMedCrossRefGoogle Scholar
  59. 59.
    Wang CS, Yang CJ, Chen SC, Chen HC, Huang MS (2009) Generalized convulsion resulted in hyperammonemia during treatment with tranexamic acid for hemoptysis.Ir J Med Sci doi:10.1007/s11845-009-0453-y
  60. 60.
    Jaing TH, Lin JL, Lin YP, Yang SH, Lin JJ, Hsia SH (2009) Hyperammonemic Encephalopathy After Induction Chemotherapy for Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 31(12):955–956PubMedCrossRefGoogle Scholar
  61. 61.
    Nott L, Price TJ, Pittman K, Patterson K, Young R, Fletcher J (2007) Hyperammonemia encephalopathy: an important cause of neurological deterioration following chemotherapy. Leuk Lymphoma 48:1702–1711PubMedCrossRefGoogle Scholar
  62. 62.
    Metzeler KH, Boeck S, Christ B, Hausmann A, Stemmler HJ, Parhofer KG, Ostermann H, Hiddemann W, Braess J (2009) Idiopathic hyperammonemia (IHA) after dose-dense induction chemotherapy for acute myeloid leukemia: Case report and review of the literature. Leuk Res 33(7):e69–e72PubMedCrossRefGoogle Scholar
  63. 63.
    Kwan L, Wang C, Levitt L (2002) Hyperammonemic encephalopathy in multiple myeloma. N Eng J Med 346:1674–1675CrossRefGoogle Scholar
  64. 64.
    Liaw CC, Wang HM, Wang CH, Yang TS, Chen JS, Chang HK, Lin YC, Liaw SJ, Yeh CT (1999) Risk of transient hyperammonemic encephalopathy in cancer patients who received continuous infusion of 5-fluorouracil with the complication of dehydration and infection. Anticancer Drugs 10:275–281PubMedCrossRefGoogle Scholar
  65. 65.
    Nott L, Price TJ, Pittman K, Patterson K, Young R, Fletcher J (2008) Hyperammonemic encephalopathy associated with rituximab-containing chemotherapy. Intern Med J 38(10):800–803PubMedGoogle Scholar
  66. 66.
    Tihtonen K, Uotila J, Lähde J, Salo M, Keskinen P (2010) Risk of hyperammonemic coma in the puerperium: two cases of women with diagnosed and undiagnosed deficiency of urea cycle enzymes. Acta Obstet Gynecol Scand 89(3):404–406PubMedCrossRefGoogle Scholar
  67. 67.
    Cordero D, Baker J, Dorinzi D, Toffle R (2005) Ornithine transcarbamylase deficiency in pregnancy. J Inherit Metab Dis 28:237–240PubMedCrossRefGoogle Scholar
  68. 68.
    Eather G, Coman D, Lander C, McGill J (2006) Carbamyl phosphate synthase deficiency: Diagnosed during pregnancy in a 41-year-old. J Clin Neurosci 13:702–706PubMedCrossRefGoogle Scholar
  69. 69.
    Seracini D, Poggi GM, Pela I (2005) Hyperammonaemia in a child with distal renal tubular acidosis. Pediatr Nephrol 20:1645–1647PubMedCrossRefGoogle Scholar
  70. 70.
    Tannen RL (1977) Relationship of renal ammonia production and potassium homeostasis. Kidney Int 11(6):453–465PubMedCrossRefGoogle Scholar
  71. 71.
    Miller SG, Schwartz GJ (1997) Hyperammonemia with distal renal tubular acidosis. Arch Dis Child 77:441–444PubMedCrossRefGoogle Scholar
  72. 72.
    Limketkai BN, Zucker SD (2008) Hyperammonemic Encephalopathy Caused by Carnitine Deficiency. J Gen Intern Med 23(2):210–213PubMedCrossRefGoogle Scholar
  73. 73.
    Samtoy B, DeBeukelaer MM (1980) Ammonia encephalopathy secondary to urinary tract infection with Proteus mirabilis. Pediatrics 65(2):294–297PubMedGoogle Scholar
  74. 74.
    Ichikawa K, Gakumazawa M, Inaba A, Shiga K, Takeshita S, Mori M, Kikuchi N (2010) Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain 32(8):688–690CrossRefGoogle Scholar
  75. 75.
    Picca S, Bartuli A, Dionisi-Vici C (2008) Medical Management and Dialysis Therapy for the Infant With an Inborn Error of Metabolism. Semin Nephrol 28:477–480PubMedCrossRefGoogle Scholar
  76. 76.
    Summar M (2001) Current strategies for the management of neonatal urea cycle disorders. J Pediatr 138:S30–S39PubMedCrossRefGoogle Scholar
  77. 77.
    Ogier de Baulny H (2002) Management and emergency treatments of neonates with a suspicion of inborn errors of metabolism. Semin Neonatol 7:17–26PubMedCrossRefGoogle Scholar
  78. 78.
    Schwahn BC, Pieterse L, Bisset WM, Galloway PG, Robinson PH (2010) Biochemical efficacy of N-carbamylglutamate in neonatal severe hyperammonaemia due to propionic acidaemia. Eur J Pediatr 169(1):133–134PubMedCrossRefGoogle Scholar
  79. 79.
    Kalkan Ucar S, Coker M, Habif S, Ulas Saz E, Karapinar B, Ucar H, Kitis O, Duran M (2009) The first use of N-carbamylglutamate in a patient with decompensated maple syrup urine disease. Metab Brain Dis 24(3):409–414PubMedCrossRefGoogle Scholar
  80. 80.
    Filippi L, Gozzini E, Fiorini P, Malvagia S, la Marca G, Donati MA (2010) N-carbamylglutamate in emergency management of hyperammonemia in neonatal acute onset propionic and methylmalonic aciduria. Neonatology 97(3):286–290PubMedCrossRefGoogle Scholar
  81. 81.
    Gebhardt B, Vlaho S, Fischer D, Sewell A, Bohles H (2003) N-carbamyl glutamate enhances ammonia detoxification in a patient with decompensated methylmalonic aciduria. Mol Genet Metab 79:303–304PubMedCrossRefGoogle Scholar
  82. 82.
    Gessler P, Buchal P, Schwenk HU, Wermuth B (2010) Favorable long-term outcome after immediate treatment of neonatal hyperammonemia due to N-acetylglutamate synthase deficiency. Eur J Pediatr 169:197–199PubMedCrossRefGoogle Scholar
  83. 83.
    Batshaw ML, Brusilow SW (1980) Treatment of hyperammonemic coma caused by inborn errors of urea synthesis. J Pediatr 97:893–900PubMedCrossRefGoogle Scholar
  84. 84.
    Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ, Brusilow SW (1996) Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599PubMedCrossRefGoogle Scholar
  85. 85.
    Das AM, Illsinger S, Hartmann H, Oehler K, Bohnhorst B, Kühn-Velten WN, Lücke T (2009) Prenatal benzoate treatment in urea cycle defects. Arch Dis Child Fetal Neonatal Ed 94(3):F216–F217PubMedCrossRefGoogle Scholar
  86. 86.
    Brusilow SW (1984) Arginine, an indispensable amino acid for patients with inborn errors of urea synthesis. J Clin Invest 74:2144–2148PubMedCrossRefGoogle Scholar
  87. 87.
    Batshaw ML, MacArthur RB, Tuchman M (2001) Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr 138(Suppl):S46–S55PubMedGoogle Scholar
  88. 88.
    Arbeiter AK, Kranz B, Wingen Bonzel KE, Dohna AM, -Schwake C, Hanssler L, Neudorf U, Hoyer PF, Büscher R (2010) ontinuous venovenous haemodialysis (CVVHD) and continuous peritoneal dialysis (CPD) in the acute management of 21 children with inborn errors of metabolism. Nephrol Dial Transplant 25:1257–1265PubMedCrossRefGoogle Scholar
  89. 89.
    Schaefer F, Straube E, Oh J, Mehls O, Mayatepek E (1999) Dialysis in neonates with inborn errors of metabolism. Nephrol Dial Transplant 14:910–918PubMedCrossRefGoogle Scholar
  90. 90.
    Wong KY, Wong SN, Lam SY, Tam S, Tsoi NS (1998) Ammonia clearance by peritoneal dialysis and continuous arteriovenous hemodiafiltration. Pediatr Nephrol 12:589–591PubMedCrossRefGoogle Scholar
  91. 91.
    Picca S, Dionisi-Vici C, Abeni D, Pastore A, Rizzo C, Orzalesi M, Sabetta G, Rizzoni G, Bartuli A (2001) Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol 16:862–867PubMedCrossRefGoogle Scholar
  92. 92.
    Rajpoot DK, Gargus JJ (2004) Acute hemodialysis for hyperammonemia in small neonates. Pediatr Nephrol 19(4):390–395PubMedCrossRefGoogle Scholar
  93. 93.
    McBryde KD, Kudelka TL, Kershaw DB, Brophy PD, Gardner JJ, Smoyer WE (2004) Clearance of amino acids by hemodialysis in argininosuccinate synthetase deficiency. J Pediatr 144:536–540PubMedCrossRefGoogle Scholar
  94. 94.
    Sadowski RH, Harmon EH, Jabs K (1994) Acute hemodialysis of infants weighing less than five kilograms. Kidney Int 45:903–906PubMedCrossRefGoogle Scholar
  95. 95.
    Donn SM, Swartz RD, Thoene JG (1979) Comparison of exchange transfusion, peritoneal dialysis, and hemodialysis for the treatment of hyperammonemia in an anuric newborn infant. J Pediatr 95(1):67–70PubMedCrossRefGoogle Scholar
  96. 96.
    Goertner L, Leupold D, Pohlandt F, Bartmann P (1989) Peritoneal dialysis in the treatment of metabolic crises caused by inherited disorders of organic and amino acid metabolism. Acta Paediatr Scand 78:706–711CrossRefGoogle Scholar
  97. 97.
    Ponikvar R, Kandus A, Urbancic A, Kornhauser AG, Primozic J, Ponikvar JG (2002) Continuous renal replacement therapy and plasma exchange in newborns and infants. Artif Organs 26:163–168PubMedCrossRefGoogle Scholar
  98. 98.
    Falk MC, Knight JF, Roy LP, Wilcken B, Schell DN, O'Connell AJ, Gillis J (1994) Continuous venovenous haemofiltration in the acute treatment of inborn errors of metabolism. Pediatr Nephrol 8(3):330–333PubMedCrossRefGoogle Scholar
  99. 99.
    Parakininkas D, Greenbaum LA (2004) Comparison of solute clearance in three modes of continuous renal replacement therapy. Pediatr Crit Care Med 5(3):269–274PubMedCrossRefGoogle Scholar
  100. 100.
    Rodrigo R, Cauli O, Boix J, ElMlili N, Agusti A, Felipo V (2009) Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem Int 55(1–3):113–118PubMedCrossRefGoogle Scholar
  101. 101.
    Acharya SK, Bhatia V, Sreenivas V, Khanal S, Panda SK (2009) Efficacy of L-ornithine L-aspartate in acute liver failure: a double-blind, randomized, placebo-controlled study. Gastroenterology 136(7):2159–2168PubMedCrossRefGoogle Scholar
  102. 102.
    Monfort P, Cauli O, Montoliu C, Rodrigo R, Llansola M, Piedrafita B, El Mlili N, Boix J, Agustí A, Felipo V (2009) Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: therapeutical implications. Neurochem Int 55(1–3):106–112PubMedCrossRefGoogle Scholar
  103. 103.
    Moini M, Mistry P, Schilsky ML (2010) Liver transplantation for inherited metabolic disorders of the liver. Curr Opin Organ Transplant 15(3):269–276PubMedCrossRefGoogle Scholar
  104. 104.
    Whitington PF, Alonso EM, Boyle JT, Molleston JP, Rosenthal P, Emond JC, Millis JM (1998) Liver transplantation for the treatment of urea cycle disorders. J Inherit Metab Dis 21(suppl 1):112–118PubMedCrossRefGoogle Scholar
  105. 105.
    Leonard JV, McKiernan PJ (2004) The role of liver transplantation in urea cycle disorders. Mol Genet Metab 81:S74–S78PubMedCrossRefGoogle Scholar
  106. 106.
    Lee B, Goss J (2001) Long-term correction of urea cycle disorders. J Pediatr 138(Suppl):S62–S71PubMedGoogle Scholar
  107. 107.
    Meyburg J, Das AM, Hoerster F, Lindner M, Kriegbaum H, Engelmann G, Schmidt J, Ott M, Pettenazzo A, Luecke T, Bertram H, Hoffmann GF, Burlina A (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87:636–641PubMedCrossRefGoogle Scholar
  108. 108.
    Krivitzky L, Babikian T, Lee HS, Thomas NH, Burk-Paull KL, Batshaw ML (2009) Intellectual, adaptive, and behavioral functioning in children with urea cycle Disorders. Pediatr Res 66:96–101PubMedCrossRefGoogle Scholar
  109. 109.
    Enns GM (2010) Nitrogen sparring therapy revisited 2009. Mol Genet Metab 100(Suppl):S65–S71PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  1. 1.Blank Memorial Hospital for ChildrenDes MoinesUSA
  2. 2.Department of Pediatrics, Pediatric Nephrology, Dialysis & transplantationUniversity of Iowa Children’s HospitalIowa CityUSA

Personalised recommendations