Pediatric Nephrology

, Volume 27, Issue 5, pp 719–725

Novel insights into the physiology of renalase and its role in hypertension and heart disease

Review

Abstract

Renalase is an amine oxidase expressed in kidney, heart, liver, and brain that metabolizes catecholamines. Tissue and plasma levels are decreased in models of hypertension and chronic kidney disease. Its expression is modulated by salt intake, and urinary renalase may regulate catecholamines levels and effect renal sodium and phosphate transport. The renalase knockout mouse is hypertensive in the absence of significant changes in renal function. Sympathetic tone is increased as evidenced by elevated plasma and urine catecholamines. Studies in humans with resistant hypertension indicate that plasma renalase levels are inversely associated with systolic blood pressure. Additionally, a functional mutation in renalase (Glu37Asp), known to be associated with essential hypertension, also predicts more severe cardiac hypertrophy and dysfunction. Lastly, a single dose of recombinant renalase administered subcutaneously to rats with chronic kidney disease or to Spontaneously Hypertensive Stroke Prone rats significantly decreases blood pressure for more than 24 h. Available data suggest that renalase deficiency is associated with increased sympathetic tone and resistant hypertension, and recombinant renalase is a potent antihypertensive agent that may provide a valuable option for treating hypertension in chronic kidney disease.

Keywords

Renal dopamine system Neurogenic hypertension Sodium transport Proximal tubular transport Blood pressure regulation Recombinant protein Treatment of hypertension 

References

  1. 1.
    Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016PubMedCrossRefGoogle Scholar
  2. 2.
    Koomans HA, Blankestijn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15:524–537PubMedCrossRefGoogle Scholar
  3. 3.
    Hostetter TH (2004) Chronic kidney disease predicts cardiovascular disease. N Eng J Med 351:1344–1346CrossRefGoogle Scholar
  4. 4.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Eng J Med 351:1296–1305CrossRefGoogle Scholar
  5. 5.
    Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, White HD, Nordlander R, Maggioni A, Dickstein K, Zelenkofske S, Leimberger JD, Califf RM, Pfeffer MA (2004) Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Eng J Med 351:1285–1295CrossRefGoogle Scholar
  6. 6.
    Go AS, Lo JC (2006) Epidemiology of non-dialysis-requiring chronic kidney disease and cardiovascular disease. Curr Opin Nephrol Hypertens 15:296–302PubMedCrossRefGoogle Scholar
  7. 7.
    Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, Esler MD, Lambert GW (2009) Sympathetic activation in chronic renal failure. J Am Soc Nephrol 20:933–939PubMedCrossRefGoogle Scholar
  8. 8.
    Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115:1275–1280PubMedGoogle Scholar
  9. 9.
    Desir GV (2009) Regulation of blood pressure and cardiovascular function by renalase. Kidney Int 76:366–370PubMedCrossRefGoogle Scholar
  10. 10.
    Hennebry SC, Eikelis N, Socratous F, Desir G, Lambert G, Schlaich M (2010) Renalase, a novel soluble FAD-dependent protein, is synthesized in the brain and peripheral nerves. Mol Psychiatry 15:234–236PubMedCrossRefGoogle Scholar
  11. 11.
    Feng W, Nian-song W, Tao X, Yang C, Hai-yan X (2009) The cloning and expression of renalase and the preparation of its monoclonal antibody. J Shanghai Jiaotong Univ Sci 14:376–379CrossRefGoogle Scholar
  12. 12.
    Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, Desir GV (2008) Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation 117:1277–1282PubMedCrossRefGoogle Scholar
  13. 13.
    Wang J, Qi S, Cheng W, Li L, Wang F, Li YZ, Zhang SP (2008) Identification, expression and tissue distribution of a renalase homologue from mouse. Mol Biol Rep 35:613–620PubMedCrossRefGoogle Scholar
  14. 14.
    Boomsma F, Tipton KF (2007) Renalase, a catecholamine-metabolising enzyme? J Neural Transm 114:775–776PubMedCrossRefGoogle Scholar
  15. 15.
    Desir G, Wang P, Velazquez H (2009) On the mechanisms mediating the cardioprotective effect of renalase. J Am Soc Nephrol Abstracts Issue 20:2009. Accessed online at http://www.asn-online.org/education_and_meetings/renal_week/archives/
  16. 16.
    Farzaneh-Far RM, Desir GV, Schiller NB, Whooley MA (2010) A functional mutation in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the Heart and Soul Study. PLoS ONE 5(10):e13496PubMedCrossRefGoogle Scholar
  17. 17.
    Desir GV (2008) Renalase deficiency in chronic kidney disease, and its contribution to hypertension and cardiovascular disease. Curr Opin Nephrol Hypertens 17:181–185PubMedCrossRefGoogle Scholar
  18. 18.
    Wang F, N-s W, Xing T, Cao Y, H-y X (2009) The cloning and expression of renalase and the preparation of its monoclonal antibody. J Shanghai Jiaotong Univ Sci 14:376–379CrossRefGoogle Scholar
  19. 19.
    Schlaich M, Socratous F, Eikelis N, Chopra R, Lambert G, Hennebry S (2010) Renalase plasma levels are associated with systolic blood pressure in patients with resistant hypertension: 9C.01. J Hypertens 28:e437 410.1097/1001.hjh.0000379519.0000382971.0000379502Google Scholar
  20. 20.
    Xu B, Gu R (2010) Renalase deficiency in heart failure: a novel mechanism underlying circulating norepinephrine accumulation. European Society of Cardiology Congress Accessed online at http://spo.escardio.org/eslides/view.aspx?eevtid=40&fp=P2485
  21. 21.
    Pestana M, Sampaio-Maia B, Moreira-Rodrigues M, Fernandes-Cerqueira C, Quelhas-Santos J (2009) Expression of renalase in a 3/4 nephrectomy rat model. NDT Plus 2:ii55-Google Scholar
  22. 22.
    Ghosh SS, Gehr TWB, Sica DA, Masilamani S, Fakhry I, Wang R, McGuire E, Ghosh S (2006) Renalase regulates blood pressure in salt sensitive Dahl rats. J Am Soc Nephrol 17:208AGoogle Scholar
  23. 23.
    Wu Y, Velazquez H, Xu J, Wang P, Li G, Liu D, Sampaio-Maia B, Quelhas-Santos J, Russell K, Russell R, Flavell R, Pestana M, Giordano G, Desir G (2010) Renalase deficiency aggravates ischemic myocardial damage. Kidney Int. doi:10.1038/ki.2010.488 Google Scholar
  24. 24.
    Desir GV, Wu Y, Wang P, Xu J, Velazquez H (2008) Renalase deficiency increases sympathetic tone and causes hypertension. J Am Soc Nephrol Abstracts Issue 2008. Accessed online at http://www.asn-online.org/education_and_meetings/renal_week/archives/
  25. 25.
    Desir G, Giordano F, Liu D, Wu Y (2009) Renalase deficiency aggravates cardiac ischemia and myocardial infarction. NDT Plus 2:ii55Google Scholar
  26. 26.
    Carey RM (2001) Theodore cooper lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension 38:297–302PubMedCrossRefGoogle Scholar
  27. 27.
    Greger R (2000) Physiology of renal sodium transport. Am J Med Sci 319:51–62PubMedCrossRefGoogle Scholar
  28. 28.
    Pestana M, Jardim H, Correia F, Vieira-Coelho MA, Soares-da-Silva P (2001) Renal dopaminergic mechanisms in renal parenchymal diseases and hypertension. Nephrol Dial Transplant 16(Suppl 1):53–59PubMedCrossRefGoogle Scholar
  29. 29.
    Ferreira A, Bettencourt P, Pimenta J, Frioes F, Pestana M, Soares-da-Silva P, Cerqueira-Gomes M (2002) The renal dopaminergic system, neurohumoral activation, and sodium handling in heart failure. Am Heart J 143:391–397PubMedCrossRefGoogle Scholar
  30. 30.
    Ferro A (2003) Renal dopamine receptors and hypertension. J Hypertens 21:37–38PubMedCrossRefGoogle Scholar
  31. 31.
    Jose PA, Eisner GM, Felder RA (2003) Dopamine and the kidney: a role in hypertension? Curr Opin Nephrol Hypertens 12:189–194PubMedCrossRefGoogle Scholar
  32. 32.
    Wilk S, Mizoguchi H, Orlowski M (1978) gamma-Glutamyl dopa: a kidney-specific dopamine precursor. J Pharmacol Exp Ther 206:227–232PubMedGoogle Scholar
  33. 33.
    Wang ZQ, Way D, Shimizu K, Fong F, Trigg L, McGrath BP (1993) Beneficial acute effects of selective modulation of renal dopamine system by gamma-L-glutamyl-L-dopa in rabbits with congestive heart failure. J Cardiovas Pharmacol 21:1004–1011CrossRefGoogle Scholar
  34. 34.
    Barthelmebs M, Caillette A, Ehrhardt JD, Velly J, Imbs JL (1990) Metabolism and vascular effects of gamma-L-glutamyl-L-dopa on the isolated rat kidney. Kidney Int 37:1414–1422PubMedCrossRefGoogle Scholar
  35. 35.
    Cummings J, Matheson LM, Maurice L, Smyth JF (1990) Pharmacokinetics, bioavailability, metabolism, tissue distribution and urinary excretion of gamma-L-glutamyl-L-dopa in the rat. J Pharm Pharmacol 42:242–246PubMedCrossRefGoogle Scholar
  36. 36.
    Worth DP, Harvey JN, Brown J, Lee MR (1985) gamma-L-Glutamyl-L-dopa is a dopamine pro-drug, relatively specific for the kidney in normal subjects. Clin Sci Lond 69:207–214PubMedGoogle Scholar
  37. 37.
    MacDonald TM, Jeffrey RF, Lee MR (1989) The renal and haemodynamic effects of a 10 h infusion of glutamyl-L-dopa in normal man. Br J Clin Pharmacol 27:811–822PubMedGoogle Scholar
  38. 38.
    Seri I, Kone BC, Gullans SR, Aperia A, Brenner BM, Ballermann BJ (1990) Influence of Na+ intake on dopamine-induced inhibition of renal cortical Na(+)-K(+)-ATPase. Am J Physiol 258:F52–F60PubMedGoogle Scholar
  39. 39.
    Oates NS, Ball SG, Perkins CM, Lee MR (1979) Plasma and urine dopamine in man given sodium chloride in the diet. Clin Sci Lond 56:261–264PubMedGoogle Scholar
  40. 40.
    Soares-da-Silva P (1993) Enhanced protein kinase C mediated inhibition of renal dopamine synthesis during high sodium intake. Biochem Pharmacol 45:1791–1800PubMedCrossRefGoogle Scholar
  41. 41.
    Chan YL (1976) Cellular mechanisms of renal tubular transport of I-dopa and its derivatives in the rat: microperfusion studies. J Pharmacol Exp Ther 199:17–24PubMedGoogle Scholar
  42. 42.
    Sampaio-Maia B, Serrao P, Guimaraes JT, Vieira-Coelho MA, Pestana M (2005) Renal dopaminergic system activity in the rat remnant kidney. Nephron Exp Nephrol 99:e46–e55PubMedCrossRefGoogle Scholar
  43. 43.
    Sampaio-Maia B, Moreira-Rodrigues M, Pestana M (2006) Role of chronic inhibition of dopamine-metabolizing enzymes in the regulation of renal sodium and phosphate excretion in the rat remnant kidney. Nephron Physiol 103:p14–p24PubMedCrossRefGoogle Scholar
  44. 44.
    Desir G, Tang L, Wang P, Li G, Velazquez H (2010) Antihypertensive effect of recombinant renalase in spontaneously hypertensive stroke prone (SHRSP) Rats. J Am Soc Nephrol 21:748AGoogle Scholar
  45. 45.
    Zhao Q, Fan Z, He J, Chen S, Li H, Zhang P, Wang L, Hu D, Huang J, Qiang B, Gu D (2007) Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population. J Mol Med 85:877–885PubMedCrossRefGoogle Scholar
  46. 46.
    Farzaneh-Far R, Desir GV, Na B, Schiller NB, Whooley MA (2010) A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study. PLoS ONE 5:e13496PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011 2011

Authors and Affiliations

  1. 1.Section of Nephrology, Department of MedicineYale University School of MedicineNew HavenUSA
  2. 2.VACHS Medical CenterWest HavenUSA

Personalised recommendations