Pediatric Nephrology

, Volume 26, Issue 6, pp 897–903

HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort

  • Rosemary Thomas
  • Simone Sanna-Cherchi
  • Bradley A. Warady
  • Susan L. Furth
  • Frederick J. Kaskel
  • Ali G. Gharavi
Original Article
  • 329 Downloads

Abstract

Malformations of the kidney and lower urinary tract are the most frequent cause of end-stage renal disease in children. Mutations in HNF1Β and PAX2 commonly cause syndromic urinary tract malformation. We searched for mutations in HNF1Β and PAX2 in North American children with renal aplasia and hypodysplasia (RHD) enrolled in the Chronic Kidney Disease in Children Cohort Study (CKiD). We identified seven mutations in this multiethnic cohort (10% of patients). In HNF1Β, we identified a nonsense (p.R181X), a missense (p.S148L), and a frameshift (Y352fsX352) mutation, and one whole gene deletion. In PAX2, we identified one splice site (IVS4-1G>T), one missense (p.G24E), and one frameshift (G24fsX28) mutation. All mutations occurred in Caucasians, accounting for 14% of disease in this subgroup. The absence of mutations in other ethnicities is likely due to the limited sample size. There were no differences in clinical parameters (age, baseline eGFR, blood pressure, body mass index, progression) between patients with or without HNF1B and PAX2 mutations. A significant proportion of North American Caucasian patients with RHD carry mutations in HNF1Β or PAX2 genes. These patients should be evaluated for complications (e.g., diabetes for HNF1Β mutations, colobomas for PAX2) and referred for genetic counseling.

Keywords

HNF1B PAX2 Renal hypodysplasia Chronic kidney disease Children 

Supplementary material

467_2011_1826_MOESM1_ESM.doc (52 kb)
Supplementary Table 1Prediction of pathogenicity via publicly available programs. (DOC 52 kb)
467_2011_1826_MOESM2_ESM.doc (94 kb)
Supplementary Table 2Previously annotated SNPs found in the CKiD cohort. (DOC 94 kb)
467_2011_1826_MOESM3_ESM.doc (108 kb)
Supplementary Table 3New variants HNF1B and PAX2. (DOC 107 kb)
467_2011_1826_MOESM4_ESM.doc (66 kb)
Supplemental Table 4Clinical parameters of patients with and without mutations. (DOC 66 kb)
467_2011_1826_MOESM5_ESM.doc (282 kb)
Supplementary Fig. 1Whole gene deletion of HNF1B (DOC 20.7 mb)
467_2011_1826_MOESM6_ESM.doc (962 kb)
Supplementary Fig. 2Conservations among species for variants in PAX2 (DOC 1.08 mb)

References

  1. 1.
    Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22:1999–2009PubMedCrossRefGoogle Scholar
  2. 2.
    Hiraoka M, Tsukahara H, Ohshima Y, Kasuga K, Ishihara Y, Mayumi M (2002) Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int 61:1840–1844PubMedCrossRefGoogle Scholar
  3. 3.
    Winyard P, Chitty LS (2008) Dysplastic kidneys. Semin Fetal Neonatal Med 13:142–151PubMedCrossRefGoogle Scholar
  4. 4.
    Klaassen I, Neuhaus TJ, Mueller-Wiefel DE, Kemper MJ (2007) Antenatal oligohydramnios of renal origin: long-term outcome. Nephrol Dial Transplant 22:432–439PubMedCrossRefGoogle Scholar
  5. 5.
    Ismaili K, Schurmans T, Wissing KM, Hall M, Van Aelst C, Janssen F (2001) Early prognostic factors of infants with chronic renal failure caused by renal dysplasia. Pediatr Nephrol 16:260–264PubMedCrossRefGoogle Scholar
  6. 6.
    Roodhooft AM, Birnholz JC, Holmes LB (1984) Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med 310:1341–1345PubMedCrossRefGoogle Scholar
  7. 7.
    Sanna-Cherchi S, Caridi G, Weng PL, Scolari F, Perfumo F, Gharavi AG, Ghiggeri GM (2007) Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr Nephrol 22:1675–1684PubMedCrossRefGoogle Scholar
  8. 8.
    Heidet L, Decramer S, Pawtowski A, Moriniere V, Bandin F, Knebelmann B, Lebre AS, Faguer S, Guigonis V, Antignac C, Salomon R (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 5:1079–1090PubMedCrossRefGoogle Scholar
  9. 9.
    Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870PubMedCrossRefGoogle Scholar
  10. 10.
    Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, Clauin S, Deschenes G, Bouissou F, Bensman A, Bellanne-Chantelot C (2006) Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17:497–503PubMedCrossRefGoogle Scholar
  11. 11.
    Edghill EL, Oram RA, Owens M, Stals KL, Harries LW, Hattersley AT, Ellard S, Bingham C (2008) Hepatocyte nuclear factor-1beta gene deletions—a common cause of renal disease. Nephrol Dial Transplant 23:627–635PubMedCrossRefGoogle Scholar
  12. 12.
    Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Munoz A, Warady BA (2006) Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1:1006–1015PubMedCrossRefGoogle Scholar
  13. 13.
    Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22:1839–1848PubMedCrossRefGoogle Scholar
  14. 14.
    Stenson PD, Ball EV, Howells K, Phillips AD, Mort M, Cooper DN (2009) The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum Genomics 4:69–72PubMedGoogle Scholar
  15. 15.
    Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217PubMedCrossRefGoogle Scholar
  16. 16.
    Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900PubMedCrossRefGoogle Scholar
  17. 17.
    Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814PubMedCrossRefGoogle Scholar
  18. 18.
    Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang C, Li WH, Krainer AR, Zhang MQ (2008) RNA landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci USA 105:5797–5802PubMedCrossRefGoogle Scholar
  20. 20.
    Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67PubMedCrossRefGoogle Scholar
  21. 21.
    Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571PubMedCrossRefGoogle Scholar
  22. 22.
    Shen Y, Wu BL (2009) Designing a simple multiplex ligation-dependent probe amplification (MLPA) assay for rapid detection of copy number variants in the genome. J Genet Genomics 36:257–265PubMedCrossRefGoogle Scholar
  23. 23.
    Mefford HC, Clauin S, Sharp AJ, Moller RS, Ullmann R, Kapur R, Pinkel D, Cooper GM, Ventura M, Ropers HH, Tommerup N, Eichler EE, Bellanne-Chantelot C (2007) Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am J Hum Genet 81:1057–1069PubMedCrossRefGoogle Scholar
  24. 24.
    Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90PubMedCrossRefGoogle Scholar
  25. 25.
    Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, Wilhelm JM, Boitard C, Noel LH, Velho G, Timsit J (2004) Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med 140:510–517PubMedGoogle Scholar
  26. 26.
    Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298PubMedCrossRefGoogle Scholar
  27. 27.
    Amiel J, Audollent S, Joly D, Dureau P, Salomon R, Tellier AL, Auge J, Bouissou F, Antignac C, Gubler MC, Eccles MR, Munnich A, Vekemans M, Lyonnet S, Attie-Bitach T (2000) PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur J Hum Genet 8:820–826PubMedCrossRefGoogle Scholar
  28. 28.
    Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11PubMedCrossRefGoogle Scholar
  29. 29.
    Schimmenti LA, Shim HH, Wirtschafter JD, Panzarino VA, Kashtan CE, Kirkpatrick SJ, Wargowski DS, France TD, Michel E, Dobyns WB (1999) Homonucleotide expansion and contraction mutations of PAX2 and inclusion of Chiari 1 malformation as part of renal-coloboma syndrome. Hum Mutat 14:369–376PubMedCrossRefGoogle Scholar
  30. 30.
    Eccles MR, Schimmenti LA (1999) Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin Genet 56:1–9PubMedCrossRefGoogle Scholar
  31. 31.
    Schimmenti LA, Cunliffe HE, McNoe LA, Ward TA, French MC, Shim HH, Zhang YH, Proesmans W, Leys A, Byerly KA, Braddock SR, Masuno M, Imaizumi K, Devriendt K, Eccles MR (1997) Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am J Hum Genet 60:869–878PubMedGoogle Scholar
  32. 32.
    Nakayama M, Nozu K, Goto Y, Kamei K, Ito S, Sato H, Emi M, Nakanishi K, Tsuchiya S, Iijima K (2010) HNF1B alterations associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 25:1073–1079PubMedCrossRefGoogle Scholar
  33. 33.
    Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385PubMedCrossRefGoogle Scholar
  34. 34.
    Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 8:2001–2008PubMedCrossRefGoogle Scholar
  35. 35.
    Kolatsi-Joannou M, Bingham C, Ellard S, Bulman MP, Allen LI, Hattersley AT, Woolf AS (2001) Hepatocyte nuclear factor-1beta: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol 12:2175–2180PubMedGoogle Scholar
  36. 36.
    Montoli A, Colussi G, Massa O, Caccia R, Rizzoni G, Civati G, Barbetti F (2002) Renal cysts and diabetes syndrome linked to mutations of the hepatocyte nuclear factor-1 beta gene: description of a new family with associated liver involvement. Am J Kidney Dis 40:397–402PubMedCrossRefGoogle Scholar
  37. 37.
    Bingham C, Hattersley AT (2004) Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1beta. Nephrol Dial Transplant 19:2703–2708PubMedCrossRefGoogle Scholar
  38. 38.
    Zaffanello M, Brugnara M, Franchini M, Fanos V (2008) TCF2 gene mutation leads to nephro-urological defects of unequal severity: an open question. Med Sci Monit 14:RA78–RA86PubMedGoogle Scholar
  39. 39.
    Oram RA, Edghill EL, Blackman J, Taylor MJ, Kay T, Flanagan SE, Ismail-Pratt I, Creighton SM, Ellard S, Hattersley AT, Bingham C (2010) Mutations in the hepatocyte nuclear factor-1beta (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am J Obstet Gynecol 203(364):e361–e365Google Scholar
  40. 40.
    Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, Hiesberger T, Fiette L, Igarashi P, Yaniv M, Pontoglio M (2004) A transcriptional network in polycystic kidney disease. EMBO J 23:1657–1668PubMedCrossRefGoogle Scholar
  41. 41.
    Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X, Somlo S, Igarashi P (2004) Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 113:814–825PubMedGoogle Scholar
  42. 42.
    Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, Stewart H, Price SM, Blair E, Hennekam RC, Fitzpatrick CA, Segraves R, Richmond TA, Guiver C, Albertson DG, Pinkel D, Eis PS, Schwartz S, Knight SJ, Eichler EE (2006) Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 38:1038–1042PubMedCrossRefGoogle Scholar
  43. 43.
    Weaver RG, Cashwell LF, Lorentz W, Whiteman D, Geisinger KR, Ball M (1988) Optic nerve coloboma associated with renal disease. Am J Med Genet 29:597–605PubMedCrossRefGoogle Scholar
  44. 44.
    Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364PubMedCrossRefGoogle Scholar
  45. 45.
    Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795PubMedGoogle Scholar
  46. 46.
    Schimmenti LA, Manligas GS, Sieving PA (2003) Optic nerve dysplasia and renal insufficiency in a family with a novel PAX2 mutation, Arg115X: further ophthalmologic delineation of the renal-coloboma syndrome. Ophthalmic Genet 24:191–202PubMedCrossRefGoogle Scholar
  47. 47.
    Cheong HI, Cho HY, Kim JH, Yu YS, Ha IS, Choi Y (2007) A clinico-genetic study of renal coloboma syndrome in children. Pediatr Nephrol 22:1283–1289PubMedCrossRefGoogle Scholar
  48. 48.
    Martinovic-Bouriel J, Benachi A, Bonniere M, Brahimi N, Esculpavit C, Morichon N, Vekemans M, Antignac C, Salomon R, Encha-Razavi F, Attie-Bitach T, Gubler MC (2010) PAX2 mutations in fetal renal hypodysplasia. Am J Med Genet A 152A:830–835PubMedCrossRefGoogle Scholar
  49. 49.
    Unger S, Bohm D, Kaiser FJ, Kaulfuss S, Borozdin W, Buiting K, Burfeind P, Bohm J, Barrionuevo F, Craig A, Borowski K, Keppler-Noreuil K, Schmitt-Mechelke T, Steiner B, Bartholdi D, Lemke J, Mortier G, Sandford R, Zabel B, Superti-Furga A, Kohlhase J (2008) Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nat Genet 40:287–289PubMedCrossRefGoogle Scholar
  50. 50.
    Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  • Rosemary Thomas
    • 1
  • Simone Sanna-Cherchi
    • 2
  • Bradley A. Warady
    • 3
  • Susan L. Furth
    • 4
  • Frederick J. Kaskel
    • 1
  • Ali G. Gharavi
    • 2
    • 5
  1. 1.Pediatric NephrologyChildren’s Hospital at MontefioreBronxUSA
  2. 2.NephrologyColumbia UniversityNew YorkUSA
  3. 3.Pediatric NephrologyChildren’s Mercy HospitalKansas CityUSA
  4. 4.Pediatric NephrologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  5. 5.Division of Nephrology, Department of Medicine, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations