Pediatric Nephrology

, Volume 26, Issue 9, pp 1483–1489 | Cite as

Two-photon in vivo imaging of cells

  • Daniel J. Christensen
  • Maiken Nedergaard


In vivo imaging of cells gives a glimpse into the world of biology in a natural setting unparalleled by any other venue. Two-photon imaging of fluorescently labeled cells has become the standard to obtain high-resolution, dynamic images of living specimens with great specificity. This review focuses on providing the reader with a short history of, and impetus behind, two-photon imaging, its working mechanics, and emerging technologies related to biological multiphoton imaging.


In vivo Fluorescence imaging Two-photon imaging Laser scanning microscopy 


  1. 1.
    Singer C (1914) Notes on the early history of microscopy. Proc Soc Med 7(2):247–179Google Scholar
  2. 2.
    Taylor DL, Waggoner AS , Murphy RF, Lanni F, Birge RR (1986) Applications of fluorescence in the biomedical sciences. Wiley, New YorkGoogle Scholar
  3. 3.
    Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407:313–319PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson T, Sheppard C (1984) Theory and practice of scanning optical microscopy. Academic Press, New YorkGoogle Scholar
  5. 5.
    Abbe E (1904) Abhandlungen über die Theorie des Mikroskops. Gesammelte Abhandlungen, Gustav Fischer Verlag, JenaGoogle Scholar
  6. 6.
    Pawley J (1995) Handbook of biological confocal microscopy, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Sali A, Glaeser R, Earnest T, Baumeister W (2003) From words to literature in structural proteomics. Nature 422:216–225PubMedCrossRefGoogle Scholar
  8. 8.
    Bozzola J, Russell L (1998) Electron microscopy, 2nd edn. Jones & Bartlett Learning, BostonGoogle Scholar
  9. 9.
    Stelzer EHK (1998) Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy. J Microsc 189:15–24CrossRefGoogle Scholar
  10. 10.
    Sandison DR, Piston DW, Williams RM, Webb WW (1995) Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscopes. Appl Opt 34:3576–3588PubMedCrossRefGoogle Scholar
  11. 11.
    Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26:2166–2185CrossRefGoogle Scholar
  12. 12.
    Stephens D, Allan V (2003) Light microscopy techniques for live cell imaging. Science 300:82–87PubMedCrossRefGoogle Scholar
  13. 13.
    Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89:141–145PubMedCrossRefGoogle Scholar
  14. 14.
    Lichtman J, Conchello J (2005) Fluorescence microscopy. Nat Methods 2:910–919PubMedCrossRefGoogle Scholar
  15. 15.
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163PubMedCrossRefGoogle Scholar
  16. 16.
    Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25PubMedCrossRefGoogle Scholar
  17. 17.
    Lakowicz J (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York, pp 607–621Google Scholar
  18. 18.
    Minsky M (1957) Microscopy apparatus. United States Patent # 3013467Google Scholar
  19. 19.
    Conchello J, Lichtman J (2005) Optical sectioning microscopy. Nat Methods 2:920–931PubMedCrossRefGoogle Scholar
  20. 20.
    Callamaras N, Parker I (1999) Construction of a confocal microscope for real-time x-y and x-z imaging. Cell Calcium 26:271–279PubMedCrossRefGoogle Scholar
  21. 21.
    Paddock S (2000) Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 16:127–149PubMedCrossRefGoogle Scholar
  22. 22.
    Xi P, Rajwa B, Jones JT, Robinson JP (2007) The design and construction of a cost-efficient confocal laser scanning microscope. Am J Phys 75:203–207CrossRefGoogle Scholar
  23. 23.
    Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:427–471CrossRefGoogle Scholar
  24. 24.
    Göeppert-Mayer M (1931) Über elementarakte mit zwei quantensprüngen. Ann Phys 401:273–294CrossRefGoogle Scholar
  25. 25.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedCrossRefGoogle Scholar
  26. 26.
    Albota M, Beljonne D, Brédas JL, Ehrlich JE, Fu JY, Heikal AA, Hess SE, Kogej T, Levin MD, Marder SR, McCord-Maughon D, Perry JW, Röckel H, Rumi M, Subramaniam G, Webb WW, Wu XL, Xu C (1998) Design of organic molecules with large two-photon absorption cross sections. Science 281:1653–1656PubMedCrossRefGoogle Scholar
  27. 27.
    Svoboda K (1994) Biological applications of optical forces. Ann Rev Biophys Biomol Struct 23:247–285CrossRefGoogle Scholar
  28. 28.
    Squirrell J, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767PubMedCrossRefGoogle Scholar
  29. 29.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedCrossRefGoogle Scholar
  30. 30.
    Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768PubMedCrossRefGoogle Scholar
  31. 31.
    Pawley J (ed) (2005) Handbook of biological confocal microscopy, 3rd edn. Springer, Berlin Heidelberg New York Google Scholar
  32. 32.
    Hell S, Lindek S, Ernst EHK (1994) Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy. J Mod Opt 41(4):675–681CrossRefGoogle Scholar
  33. 33.
    Centonze V, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024PubMedCrossRefGoogle Scholar
  34. 34.
    Diaspro A, Robello M (2000) Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures. J Photochem Photobiol B Biol 55:1–8CrossRefGoogle Scholar
  35. 35.
    Cox G, Sheppard CJ (2004) Practical limits of resolution in confocal and non-linear microscopy. Micros Res Tech 63:18–22CrossRefGoogle Scholar
  36. 36.
    Phillips CL, Arend LJ, Filson AJ, Kojetin DJ, Clendenon JL, Fang S, Dunn KW (2001) Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy. Am J Pathol 158:49–55PubMedCrossRefGoogle Scholar
  37. 37.
    Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2:872–880PubMedCrossRefGoogle Scholar
  38. 38.
    Masters BR, So PTC (1999) Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: a comparison. Microsc Microanal 5:282–289PubMedGoogle Scholar
  39. 39.
    Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357PubMedCrossRefGoogle Scholar
  40. 40.
    Soeller C, Cannell MB (1996) Construction of a two-photon microscope and optimization of illumination pulse duration. Pflügers Archiv Eur J Physiol 432:555–561CrossRefGoogle Scholar
  41. 41.
    Müller M, Schmidt J, Mironov SL, Richter DW (2003) Construction and performance of a custom-built two-photon laser scanning system. J Phys D Appl Phys 36:1747–1757CrossRefGoogle Scholar
  42. 42.
    Majewska A, Yiu G, Yuste R (2000) A custom-made two-photon microscope and deconvolution system. Pflügers Archiv Eur J Physiol 441:398–408CrossRefGoogle Scholar
  43. 43.
    Tan P, Llano I, Hopt A, Wurriehausen F, Neher E (1999) Fast scanning and efficient photo detection in a simple two-photon microscope. J Neurosci Meth 92:123–135CrossRefGoogle Scholar
  44. 44.
    Hausser M, Mel B (2003) Dendrites: bug or feature? Curr Opin Neurobiol 13:372–383PubMedCrossRefGoogle Scholar
  45. 45.
    Villringer A, Them A, Lindauer I, Einhaupl K, Dirnagl U (1994) Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res 75:55–62PubMedGoogle Scholar
  46. 46.
    Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D (2006) Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci USA 104:365–370PubMedCrossRefGoogle Scholar
  47. 47.
    Iyer V, Hoogland TM, Saggau P (2006) Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. J Neurophysiol 95:535–545PubMedCrossRefGoogle Scholar
  48. 48.
    Grewe B, Langer D, Kasper H, Kampa BM, Helmchen F (2010) High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat Methods 7:399–405PubMedCrossRefGoogle Scholar
  49. 49.
    Murali S, Thompson KP, Rolland JP (2009) Three-dimensional adaptive microscopy using embedded liquid lens. Opt Lett 34:145–147PubMedCrossRefGoogle Scholar
  50. 50.
    Mondal PP, Vicidomini G, Diaspro A (2008) Image reconstruction for multiphoton fluorescence microscopy. Appl Phys Lett 92:103902CrossRefGoogle Scholar
  51. 51.
    Mondal PP, Diaspro A (2008) Lateral resolution improvement in two-photon excitation microscopy by aperture engineering. Opt Commun 281:1855–1859CrossRefGoogle Scholar
  52. 52.
    Hell S, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  53. 53.
    Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW (2008) Resolution scaling in STED microscopy. Opt Express 16:4154–4162PubMedCrossRefGoogle Scholar
  54. 54.
    Ding JB, Takasaki KT, Sabatini BL (2009) Supra resolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63:429–437PubMedCrossRefGoogle Scholar
  55. 55.
    Celso CL, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Côté D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–97PubMedCrossRefGoogle Scholar
  56. 56.
    Li D, Zheng W, Zeng Y, Qu JY (2010) In vivo and simultaneous multimodal imaging: integrated multiplex coherent anti-stokes Raman scattering and two-photon microscopy. App Phys Lett 97:223702CrossRefGoogle Scholar
  57. 57.
    Helmchen F, Fee MS, Tank DW, Denk W (2001) A miniature head-mounted two-photon microscope. Neuron 31:903–912PubMedCrossRefGoogle Scholar
  58. 58.
    Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57PubMedCrossRefGoogle Scholar
  59. 59.
    Flushberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274CrossRefGoogle Scholar
  60. 60.
    Balu M, Baldacchini T, Carter J, Krasieva TB, Zadoyan R, Tromberg BJ (2009) Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J Biomed Opt 14:010508PubMedCrossRefGoogle Scholar
  61. 61.
    Kobat D, Durst M, Nishimura N, Wong A, Schaffer C, Xu C (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17:13354–13364PubMedCrossRefGoogle Scholar
  62. 62.
    Durr N, Larson T, Smith DK, Korgel BA, Sokolov K, Ben-Yakar A (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945PubMedCrossRefGoogle Scholar
  63. 63.
    Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839PubMedCrossRefGoogle Scholar
  64. 64.
    Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008) A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Methods 5:805–811PubMedCrossRefGoogle Scholar
  65. 65.
    Fritze O, Schleicher M, König K, Schenke-Layland K, Stock U, Harasztosi C (2010) Facilitated noninvasive visualization of collagen and elastin in blood vessels. Tissue Eng C Meth 16(4):705–710CrossRefGoogle Scholar
  66. 66.
    Wang BG, König K, Halbhuber KJ (2009) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc 238:1–20CrossRefGoogle Scholar
  67. 67.
    Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ, Bacallao RL, Molitoris BA (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Physiol Cell Physiol 283:C905–C916PubMedGoogle Scholar
  68. 68.
    Molitoris BA, Sandoval RM (2005) Intravital multiphoton microscopy of dynamic renal processes. Am J Physiol Renal Physiol 288:F1084–F1089PubMedCrossRefGoogle Scholar
  69. 69.
    Molitoris BA, Sandoval RM (2010) Multiphoton imaging techniques in acute kidney injury. Contrib Nephrol 165:46–53PubMedCrossRefGoogle Scholar
  70. 70.
    Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD (2007) The normal kidney filters nephritic levels of albumin retrieved by proximal tubule cells: Retrieval is disrupted in nephritic states. Kidney Int 71:504–513PubMedCrossRefGoogle Scholar
  71. 71.
    Peti-Peterdi J, Toma I, Sipos A, Vargas SL (2009) Multiphoton imaging of renal regulatory mechanisms. Physiology 24:88–96PubMedCrossRefGoogle Scholar
  72. 72.
    Harzic R, Riemann I, Weinigel M, König K, Messerschmidt B (2009) Rigid and high-numerical-aperture two-photon fluorescence endoscope. Appl Opt 48:3396–3400PubMedCrossRefGoogle Scholar
  73. 73.
    Brown EB, Shear JB, Adams SR, Tsien RY, Webb WW (1999) Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J 76:489–499PubMedCrossRefGoogle Scholar
  74. 74.
    Mulligan SJ, MacVicar B A, Méndez-Vilas A , Díaz J (2007) Two-photon fluorescence microscopy: basic principles, advantages and risks. Modern Research and Educational Topics in Microscopy. FormatexGoogle Scholar
  75. 75.
    Zipfel W, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377PubMedCrossRefGoogle Scholar
  76. 76.
    Helmchen F, Waters J (2002) Ca2+ imaging in the mammalian brain in vivo. Eur J Pharmacol 447:119–129PubMedCrossRefGoogle Scholar
  77. 77.
    Nimmerjahn A, Theer P, Helmchen F (2008) In: Greenbaum E, Braun M, Gilch P, Zinth W (eds) Two-photon laser scanning microscopy in ultrashort laser pulses in biology and medicine. Springer, Berlin Heidelberg New York, pp 29–51Google Scholar
  78. 78.
    Rubart M (2004) Two-photon microscopy of cells and tissue. Circ Res 95:1154–1166PubMedCrossRefGoogle Scholar
  79. 79.
    König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA
  2. 2.Center for Translational NeuromedicineUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations