Pediatric Nephrology

, Volume 26, Issue 9, pp 1469–1478

Defining the genetic blueprint of kidney development

  • S. Steven Potter
  • Eric W. Brunskill
  • Larry T. Patterson
Review

Abstract

Thousands of genes show differential expression patterns during kidney development, suggesting that the genetic program driving this process is complex. While great progress has been made in defining the outline of the genetic basis of nephrogenesis, it is clear that much remains to be learned. A global atlas of the gene expression profiles of the multiple elements of the developing kidney would allow the identification of novel growth factor–receptor interactions, identify additional molecular markers of distinct components, facilitate the generation of compartment specific GFP-CRE transgenic mouse tools, lend insights into the genetic regulatory circuits governing nephron formation, and fully characterize the waves of gene expression that impel nephrogenesis. Both microarrays and next generation deep sequencing of cDNA libraries can be used to define comprehensive, sensitive, and quantitative gene expression profiles. In addition, laser capture microdissection and transgenic GFP mice can be used to isolate specific compartments and pure cell types from the developing kidney. Advancing technologies are even allowing robust gene expression profiling of single cells. The final goal is the production of an exquisitely detailed atlas of the gene expression program that drives kidney development.

Keywords

Kidney development Nephrogenesis Diabetic nephropathy Microarrays Renal vesicles 

References

  1. 1.
    Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712PubMedCrossRefGoogle Scholar
  2. 2.
    Quaggin SE, Kreidberg JA (2008) Development of the renal glomerulus: good neighbors and good fences. Development 135:609–620PubMedCrossRefGoogle Scholar
  3. 3.
    Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874PubMedCrossRefGoogle Scholar
  4. 4.
    Stuart RO, Bush KT, Nigam SK (2001) Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 98:5649–5654PubMedCrossRefGoogle Scholar
  5. 5.
    Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS (2003) A catalogue of gene expression in the developing kidney. Kidney Int 64:1588–1604PubMedCrossRefGoogle Scholar
  6. 6.
    Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM (2005) Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics 23:159–171PubMedCrossRefGoogle Scholar
  7. 7.
    Schwab K, Hartman HA, Liang HC, Aronow BJ, Patterson LT, Potter SS (2006) Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development. Dev Biol 293:540–554PubMedCrossRefGoogle Scholar
  8. 8.
    Stuart RO, Bush KT, Nigam SK (2003) Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney Int 64:1997–2008PubMedCrossRefGoogle Scholar
  9. 9.
    Schmidt-Ott KM, Masckauchan TN, Chen X, Hirsh BJ, Sarkar A, Yang J, Paragas N, Wallace VA, Dufort D, Pavlidis P, Jagla B, Kitajewski J, Barasch J (2007) Beta-catenin/TCF/Lef controls a differentiation-associated transcriptional program in renal epithelial progenitors. Development 134:3177–3190PubMedCrossRefGoogle Scholar
  10. 10.
    Takasato M, Osafune K, Matsumoto Y, Kataoka Y, Yoshida N, Meguro H, Aburatani H, Asashima M, Nishinakamura R (2004) Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice. Mech Dev 121:547–557PubMedCrossRefGoogle Scholar
  11. 11.
    Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Yu J, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15:781–791PubMedCrossRefGoogle Scholar
  12. 12.
    Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:RESEARCH0088Google Scholar
  13. 13.
    Zandi S, Mansson R, Tsapogas P, Zetterblad J, Bryder D, Sigvardsson M (2008) EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J Immunol 181:3364–3372PubMedGoogle Scholar
  14. 14.
    Mansson R, Hultquist A, Luc S, Yang L, Anderson K, Kharazi S, Al-Hashmi S, Liuba K, Thoren L, Adolfsson J, Buza-Vidas N, Qian H, Soneji S, Enver T, Sigvardsson M, Jacobsen SE (2007) Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26:407–419PubMedCrossRefGoogle Scholar
  15. 15.
    Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11:774–785PubMedCrossRefGoogle Scholar
  16. 16.
    McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, Lessard JL, Little MH, Potter SS, Wilder EL, Zhang P (2008) GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 19:667–671PubMedCrossRefGoogle Scholar
  17. 17.
    Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387PubMedCrossRefGoogle Scholar
  18. 18.
    Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292PubMedCrossRefGoogle Scholar
  19. 19.
    Park JS, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134:2533–2539PubMedCrossRefGoogle Scholar
  20. 20.
    Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, Behringer RR (2005) Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 132:2809–2823PubMedCrossRefGoogle Scholar
  21. 21.
    Potter SS, Hartman HA, Kwan KM, Behringer RR, Patterson LT (2007) Laser capture-microarray analysis of Lim1 mutant kidney development. Genesis 45:432–439PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen MP, Clements RS, Hud E, Cohen JA, Ziyadeh FN (1996) Evolution of renal function abnormalities in the db/db mouse that parallels the development of human diabetic nephropathy. Exp Nephrol 4:166–171PubMedGoogle Scholar
  23. 23.
    Brunskill EW, Potter SS (2010) Gene expression programs of mouse endothelial cells in kidney development and disease. PLoS ONE 5:12034CrossRefGoogle Scholar
  24. 24.
    Breyer MD, Bottinger E, Brosius FC 3rd, Coffman TM, Harris RC, Heilig CW, Sharma K (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45PubMedCrossRefGoogle Scholar
  25. 25.
    Min W, Yamanaka N (1993) Three-dimensional analysis of increased vasculature around the glomerular vascular pole in diabetic nephropathy. Virchows Arch A Pathol Anat Histopathol 423:201–207PubMedCrossRefGoogle Scholar
  26. 26.
    Osterby R, Asplund J, Bangstad HJ, Nyberg G, Rudberg S, Viberti GC, Walker JD (1999) Neovascularization at the vascular pole region in diabetic glomerulopathy. Nephrol Dial Transplant 14:348–352PubMedCrossRefGoogle Scholar
  27. 27.
    Osterby R, Nyberg G (1987) New vessel formation in the renal corpuscles in advanced diabetic glomerulopathy. J Diabet Complications 1:122–127PubMedCrossRefGoogle Scholar
  28. 28.
    Stout LC, Whorton EB (2007) Pathogenesis of extra efferent vessel development in diabetic glomeruli. Hum Pathol 38:1167–1177PubMedCrossRefGoogle Scholar
  29. 29.
    Wada J, Zhang H, Tsuchiyama Y, Hiragushi K, Hida K, Shikata K, Kanwar YS, Makino H (2001) Gene expression profile in streptozotocin-induced diabetic mice kidneys undergoing glomerulosclerosis. Kidney Int 59:1363–1373PubMedCrossRefGoogle Scholar
  30. 30.
    Susztak K, Bottinger E, Novetsky A, Liang D, Zhu Y, Ciccone E, Wu D, Dunn S, McCue P, Sharma K (2004) Molecular profiling of diabetic mouse kidney reveals novel genes linked to glomerular disease. Diabetes 53:784–794PubMedCrossRefGoogle Scholar
  31. 31.
    Knoll KE, Pietrusz JL, Liang M (2005) Tissue-specific transcriptome responses in rats with early streptozotocin-induced diabetes. Physiol Genomics 21:222–229PubMedCrossRefGoogle Scholar
  32. 32.
    Wu Y, Liu Z, Xiang Z, Zeng C, Chen Z, Ma X, Li L (2006) Obesity-related glomerulopathy: insights from gene expression profiles of the glomeruli derived from renal biopsy samples. Endocrinology 147:44–50PubMedCrossRefGoogle Scholar
  33. 33.
    Baelde HJ, Eikmans M, Doran PP, Lappin DW, de Heer E, Bruijn JA (2004) Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy. Am J Kidney Dis 43:636–650PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefGoogle Scholar
  35. 35.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  36. 36.
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349PubMedCrossRefGoogle Scholar
  37. 37.
    Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619PubMedCrossRefGoogle Scholar
  38. 38.
    Schmidt-Ott KM, Chen X, Paragas N, Levinson RS, Mendelsohn CL, Barasch J (2006) c-kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol 299:238–249PubMedCrossRefGoogle Scholar
  39. 39.
    Mugford JW, Yu J, Kobayashi A, McMahon AP (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333:312–323PubMedCrossRefGoogle Scholar
  40. 40.
    Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332:273–286PubMedCrossRefGoogle Scholar
  41. 41.
    Trimarchi JM, Stadler MB, Cepko CL (2008) Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS ONE 3:e1588PubMedCrossRefGoogle Scholar
  42. 42.
    Cherry TJ, Trimarchi JM, Stadler MB, Cepko CL (2009) Development and diversification of retinal amacrine interneurons at single cell resolution. Proc Natl Acad Sci USA 106:9495–9500PubMedCrossRefGoogle Scholar
  43. 43.
    Esumi S, Wu SX, Yanagawa Y, Obata K, Sugimoto Y, Tamamaki N (2008) Method for single-cell microarray analysis and application to gene-expression profiling of GABAergic neuron progenitors. Neurosci Res 60:439–451PubMedCrossRefGoogle Scholar
  44. 44.
    Kawaguchi A, Ikawa T, Kasukawa T, Ueda HR, Kurimoto K, Saitou M, Matsuzaki F (2008) Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 135:3113–3124PubMedCrossRefGoogle Scholar
  45. 45.
    Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685PubMedCrossRefGoogle Scholar
  46. 46.
    Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226PubMedCrossRefGoogle Scholar
  47. 47.
    Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309PubMedCrossRefGoogle Scholar
  48. 48.
    Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:174–180PubMedCrossRefGoogle Scholar
  49. 49.
    Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2011

Authors and Affiliations

  • S. Steven Potter
    • 1
  • Eric W. Brunskill
    • 1
  • Larry T. Patterson
    • 2
  1. 1.Division of Developmental BiologyChildren’s Hospital Medical CenterCincinnatiUSA
  2. 2.Division of Nephrology and HypertensionChildren’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations