Pediatric Nephrology

, Volume 26, Issue 3, pp 377–384 | Cite as

Pathogenesis, diagnosis and management of hyperkalemia

Educational Review


Hyperkalemia is a potentially life-threatening condition in which serum potassium exceeds 5.5 mmol/l. It can be caused by reduced renal excretion, excessive intake or leakage of potassium from the intracellular space. In addition to acute and chronic renal failure, hypoaldosteronism, and massive tissue breakdown as in rhabdomyolysis, are typical conditions leading to hyperkalemia. Symptoms are non-specific and predominantly related to muscular or cardiac dysfunction. Treatment has to be initiated immediately using different therapeutic strategies to increase potassium shift into the intracellular space or to increase elimination, together with reduction of intake. Knowledge of the physiological mechanisms of potassium handling is essential in understanding the causes of hyperkalemia as well as its treatment. This article reviews the pathomechanisms leading to hyperkalemic states, its symptoms, and different treatment options.


Hyperkalemia Potassium Renal failure Salbutamol 



  1. 1.
    Klevay LM, Bogden JD, Aladjem M, Sandstead HH, Kemp FW, Li W, Skurnick J, Aviv A (2007) Renal and gastrointestinal potassium excretion in humans: new insight based on new data and review and analysis of published studies. J Am Coll Nutr 26:103–110PubMedGoogle Scholar
  2. 2.
    Kemper MJ (2009) Potassium and magnesium physiology. In: Ronco C, Bellomo R, Kellum JA (eds) Critical Care Nephrology, pp 478–482Google Scholar
  3. 3.
    Smith SM (2010) Thiazide diuretics. N Engl J Med 362:659–660, author reply 660PubMedCrossRefGoogle Scholar
  4. 4.
    Liu Z, Wang HR, Huang CL (2009) Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase. J Biol Chem 284:12198–12206PubMedCrossRefGoogle Scholar
  5. 5.
    Huang C, Miller RT (2007) Regulation of renal ion transport by the calcium-sensing receptor: an update. Curr Opin Nephrol Hypertens 16:437–443PubMedCrossRefGoogle Scholar
  6. 6.
    Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13:836–847PubMedGoogle Scholar
  7. 7.
    Palmer LG, Frindt G (2000) Aldosterone and potassium secretion by the cortical collecting duct. Kidney Int 57:1324–1328PubMedCrossRefGoogle Scholar
  8. 8.
    Stanton BA, Biemesderfer D, Wade JB, Giebisch G (1981) Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int 19:36–48PubMedCrossRefGoogle Scholar
  9. 9.
    Stetson DL, Wade JB, Giebisch G (1980) Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int 17:45–56PubMedCrossRefGoogle Scholar
  10. 10.
    Sonnenberg H, Honrath U, Wilson DR (1987) Effect of vasopressin analogue (dDAVP) on potassium transport in medullary collecting duct. Am J Physiol 252:F986–F991PubMedGoogle Scholar
  11. 11.
    Su M, Stork C, Ravuri S, Lavoie T, Anguish D, Nelson LS, Hoffman RS (2001) Sustained-release potassium chloride overdose. J Toxicol Clin Toxicol 39:641–648PubMedCrossRefGoogle Scholar
  12. 12.
    Margassery S, Bastani B (2001) Life-threatening hyperkalemia and acidosis secondary to trimethoprim-sulfamethoxazole treatment. J Nephrol 14:410–414PubMedGoogle Scholar
  13. 13.
    Weir MR, Rolfe M (2010) Potassium homeostasis and Renin-Angiotensin-aldosterone system inhibitors. Clin J Am Soc Nephrol 5:531–548PubMedCrossRefGoogle Scholar
  14. 14.
    Sica DA, Gehr TW, Yancy C (2003) Hyperkalemia, congestive heart failure, and aldosterone receptor antagonism. Congest Heart Fail 9:224–229PubMedCrossRefGoogle Scholar
  15. 15.
    Schambelan M, Sebastian A, Biglieri EG (1980) Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 17:89–101PubMedCrossRefGoogle Scholar
  16. 16.
    Batlle DC, Arruda JA, Kurtzman NA (1981) Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304:373–380PubMedCrossRefGoogle Scholar
  17. 17.
    Karet FE (2009) Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol 20:251–254PubMedCrossRefGoogle Scholar
  18. 18.
    Bogdanovic R, Stajic N, Putnik J, Paripovic A (2009) Transient type 1 pseudo-hypoaldosteronism: report on an eight-patient series and literature review. Pediatr Nephrol 24:2167–2175PubMedCrossRefGoogle Scholar
  19. 19.
    Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112PubMedCrossRefGoogle Scholar
  20. 20.
    Klemm SA, Gordon RD, Tunny TJ, Thompson RE (1991) The syndrome of hypertension and hyperkalemia with normal GFR (Gordon’s syndrome): is there increased proximal sodium reabsorption? Clin Invest Med 14:551–558PubMedGoogle Scholar
  21. 21.
    Speiser PW, White PC (2003) Congenital adrenal hyperplasia. N Engl J Med 349:776–788PubMedCrossRefGoogle Scholar
  22. 22.
    Poggio R, Grancelli HO, Miriuka SG (2010) Understanding the risk of hyperkalaemia in heart failure: role of aldosterone antagonism. Postgrad Med J 86:136–142PubMedCrossRefGoogle Scholar
  23. 23.
    Rodriguez-Soriano J, Vallo A, Ariceta G, Martul P, de la Rica I (1996) Renal tubular handling of potassium in children with insulin-dependent diabetes mellitus. Pediatr Nephrol 10:1–6PubMedCrossRefGoogle Scholar
  24. 24.
    Conte G, Dal Canton A, Imperatore P, De Nicola L, Gigliotti G, Pisanti N, Memoli B, Fuiano G, Esposito C, Andreucci VE (1990) Acute increase in plasma osmolality as a cause of hyperkalemia in patients with renal failure. Kidney Int 38:301–307PubMedCrossRefGoogle Scholar
  25. 25.
    Perazella MA (2000) Drug-induced hyperkalemia: old culprits and new offenders. Am J Med 109:307–314PubMedCrossRefGoogle Scholar
  26. 26.
    Martyn JA, Richtsfeld M (2006) Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology 104:158–169PubMedCrossRefGoogle Scholar
  27. 27.
    Jurkat-Rott K, Holzherr B, Fauler M, Lehmann-Horn F (2010) Sodium channelopathies of skeletal muscle result from gain or loss of function. Pflugers Arch 460:239–248PubMedCrossRefGoogle Scholar
  28. 28.
    Martinez-Vea A, Bardaji A, Garcia C, Oliver JA (1999) Severe hyperkalemia with minimal electrocardiographic manifestations: a report of seven cases. J Electrocardiol 32:45–49PubMedCrossRefGoogle Scholar
  29. 29.
    Montague BT, Ouellette JR, Buller GK (2008) Retrospective review of the frequency of ECG changes in hyperkalemia. Clin J Am Soc Nephrol 3:324–330PubMedCrossRefGoogle Scholar
  30. 30.
    Owens H, Siparsky G, Bajaj L, Hampers LC (2005) Correction of factitious hyperkalemia in hemolyzed specimens. Am J Emerg Med 23:872–875PubMedCrossRefGoogle Scholar
  31. 31.
    Aslam S, Friedman EA, Ifudu O (2002) Electrocardiography is unreliable in detecting potentially lethal hyperkalaemia in haemodialysis patients. Nephrol Dial Transplant 17:1639–1642PubMedCrossRefGoogle Scholar
  32. 32.
    Kemper MJ, Harps E, Muller-Wiefel DE (1996) Hyperkalemia: therapeutic options in acute and chronic renal failure. Clin Nephrol 46:67–69PubMedGoogle Scholar
  33. 33.
    Kemper MJ, Harps E, Hellwege HH, Muller-Wiefel DE (1996) Effective treatment of acute hyperkalaemia in childhood by short-term infusion of salbutamol. Eur J Pediatr 155:495–497PubMedCrossRefGoogle Scholar
  34. 34.
    Yaseen H, Khalaf M, Dana A, Yaseen N, Darwich M (2008) Salbutamol versus cation-exchange resin (kayexalate) for the treatment of nonoliguric hyperkalemia in preterm infants. Am J Perinatol 25:193–197PubMedCrossRefGoogle Scholar
  35. 35.
    Blumberg A, Weidmann P, Ferrari P (1992) Effect of prolonged bicarbonate administration on plasma potassium in terminal renal failure. Kidney Int 41:369–374PubMedCrossRefGoogle Scholar
  36. 36.
    Bragg-Gresham JL, Fissell RB, Mason NA, Bailie GR, Gillespie BW, Wizemann V, Cruz JM, Akiba T, Kurokawa K, Ramirez S, Young EW (2007) Diuretic use, residual renal function, and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Pattern Study (DOPPS). Am J Kidney Dis 49:426–431PubMedCrossRefGoogle Scholar
  37. 37.
    Bennett LN, Myers TF, Lambert GH (1996) Cecal perforation associated with sodium polystyrene sulfonate-sorbitol enemas in a 650-gram infant with hyperkalemia. Am J Perinatol 13:167–170PubMedCrossRefGoogle Scholar
  38. 38.
    Ricci Z, Bellomo R, Ronco C (2009) Renal replacement techniques: descriptions, mechanisms, choices and controversies. In: Ronco C, Bellomo R, Kellum JA (eds) Critical Care Nephrology. Elsevier, Saunders, pp 1136–1141Google Scholar
  39. 39.
    Choi MJ, Ziyadeh FN (2008) The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol 19:424–426PubMedCrossRefGoogle Scholar
  40. 40.
    Webb NJ, Postlethwaite RJ (2003) Clinical Paediatric Nephrology, 3rd edn. Oxford University Press, p 55Google Scholar

Copyright information

© IPNA 2010

Authors and Affiliations

  1. 1.Department of Pediatric NephrologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations