Pediatric Nephrology

, Volume 26, Issue 1, pp 29–40

Biomarkers of acute kidney injury in children: discovery, evaluation, and clinical application

  • Zubaida Al-Ismaili
  • Ana Palijan
  • Michael Zappitelli
Review

Abstract

Acute kidney injury (AKI) in children is associated with increased mortality and prolonged length of hospital stay and may also be associated with long-term chronic kidney disease development. Despite encouraging results on AKI treatment in animal studies, no specific treatment has yet been successful in humans. One of the important factors contributing to this problem is the lack of an early AKI diagnostic test. Serum creatinine, the current main diagnostic test for AKI, rises late in AKI pathophysiology and is an inaccurate marker of acute changes in glomerular filtration rate. Therefore, new biomarkers of AKI are needed. With great advancements in genomics, proteomics, and metabolomics, new AKI biomarkers, mainly consisting of urinary proteins that appear in response to renal tubular cell injury, have been, and continue to be, discovered. These new biomarkers offer promise for early AKI diagnosis and for the depiction of severity of renal injury occurring with AKI. This review provides a summary of what a biomarker is, why we need new biomarkers of AKI, and how biomarkers are discovered and should be evaluated. The review also provides a summary of selected AKI biomarkers that have been studied in children.

Keywords

Acute renal failure Children Diagnostic test Chronic kidney disease Genomics Proteomics 

References

  1. 1.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  2. 2.
    Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31CrossRefPubMedGoogle Scholar
  4. 4.
    Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL (2008) Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol 3:948–954CrossRefPubMedGoogle Scholar
  5. 5.
    Zappitelli M, Bernier PL, Saczkowski RS, Tchervenkov CI, Gottesman R, Dancea A, Hyder A, Alkandari O (2009) A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int 76:885–892CrossRefPubMedGoogle Scholar
  6. 6.
    Plotz FB, Bouma AB, van Wijk JA, Kneyber MC, Bokenkamp A (2008) Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 34:1713–1717CrossRefPubMedGoogle Scholar
  7. 7.
    Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69:184–189CrossRefPubMedGoogle Scholar
  8. 8.
    Coca SG, Parikh CR (2008) Urinary biomarkers for acute kidney injury: perspectives on translation. Clin J Am Soc Nephrol 3:481–490CrossRefPubMedGoogle Scholar
  9. 9.
    Scaros O, Fisler R (2005) Biomarker technology roundup: from discovery to clinical applications, a broad set of tools is required to translate from the lab to the clinic. Biotechniques Suppl:30–32Google Scholar
  10. 10.
    Fliser D, Novak J, Thongboonkerd V, Argiles A, Jankowski V, Girolami MA, Jankowski J, Mischak H (2007) Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18:1057–1071CrossRefPubMedGoogle Scholar
  11. 11.
    MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–532CrossRefPubMedGoogle Scholar
  12. 12.
    Nordstrom A, Lewensohn R (2010) Metabolomics: moving to the clinic. J Neuroimmune Pharmacol 5:4–17CrossRefPubMedGoogle Scholar
  13. 13.
    Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefPubMedGoogle Scholar
  14. 14.
    Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M, Yasui Y (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93:1054–1061CrossRefPubMedGoogle Scholar
  15. 15.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 365:1231–1238CrossRefPubMedGoogle Scholar
  16. 16.
    Pritts EA, Duleba A, Olive DL (1999) Evidence-based medicine: evaluating diagnostic tests. J Am Assoc Gynecol Laparosc 6:105–112CrossRefPubMedGoogle Scholar
  17. 17.
    van Stralen KJ, Stel VS, Reitsma JB, Dekker FW, Zoccali C, Jager KJ (2009) Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int 75:1257–1263CrossRefPubMedGoogle Scholar
  18. 18.
    Devarajan P (2008) Neutrophil gelatinase-associated lipocalin-an emerging troponin for kidney injury. Nephrol Dial Transplant 23:3737–3743CrossRefPubMedGoogle Scholar
  19. 19.
    Kjeldsen L, Bainton DF, Sengelov H, Borregaard N (1993) Structural and functional heterogeneity among peroxidase-negative granules in human neutrophils: identification of a distinct gelatinase-containing granule subset by combined immunocytochemistry and subcellular fractionation. Blood 82:3183–3191PubMedGoogle Scholar
  20. 20.
    Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621PubMedGoogle Scholar
  21. 21.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543CrossRefPubMedGoogle Scholar
  22. 22.
    Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315CrossRefPubMedGoogle Scholar
  23. 23.
    Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H (2008) The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol 19:547–558CrossRefPubMedGoogle Scholar
  24. 24.
    Bennett M, Dent CL, Ma Q, Dastrala S, Grenier F, Workman R, Syed H, Ali S, Barasch J, Devarajan P (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 3:665–673CrossRefPubMedGoogle Scholar
  25. 25.
    Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, Devarajan P (2007) Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care 11:R127CrossRefPubMedGoogle Scholar
  26. 26.
    Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH 3rd, Ma Q, Dastrala S, Bennett M, Mitsnefes M, Devarajan P (2007) NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol 22:2089–2095CrossRefPubMedGoogle Scholar
  27. 27.
    Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54:1012–1024CrossRefPubMedGoogle Scholar
  28. 28.
    Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P (2006) Urinary neutrophil gelatinase-associated lipocalcin in D + HUS: a novel marker of renal injury. Pediatr Nephrol 21:989–994CrossRefPubMedGoogle Scholar
  29. 29.
    Yilmaz A, Sevketoglu E, Gedikbasi A, Karyagar S, Kiyak A, Mulazimoglu M, Aydogan G, Ozpacaci T, Hatipoglu S (2009) Early prediction of urinary tract infection with urinary neutrophil gelatinase associated lipocalin. Pediatr Nephrol 24:2387–2392CrossRefPubMedGoogle Scholar
  30. 30.
    Goldstein SL, Devarajan P (2008) Progression from acute kidney injury to chronic kidney disease: a pediatric perspective. Adv Chronic Kidney Dis 15:278–283CrossRefPubMedGoogle Scholar
  31. 31.
    Leslie JA, Meldrum KK (2008) The role of interleukin-18 in renal injury. J Surg Res 145:170–175CrossRefPubMedGoogle Scholar
  32. 32.
    Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW, Edelstein CL (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145–1152CrossRefPubMedGoogle Scholar
  33. 33.
    Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL (2002) Neutrophil-independent mechanisms of caspase-1-and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest 110:1083–1091PubMedGoogle Scholar
  34. 34.
    Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43:405–414CrossRefPubMedGoogle Scholar
  35. 35.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16:3046–3052CrossRefPubMedGoogle Scholar
  36. 36.
    Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70:199–203CrossRefPubMedGoogle Scholar
  37. 37.
    Haase M, Bellomo R, Story D, Davenport P, Haase-Fielitz A (2008) Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit Care 12:R96CrossRefPubMedGoogle Scholar
  38. 38.
    Washburn KK, Zappitelli M, Arikan AA, Loftis L, Yalavarthy R, Parikh CR, Edelstein CL, Goldstein SL (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23:566–572CrossRefPubMedGoogle Scholar
  39. 39.
    Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142CrossRefPubMedGoogle Scholar
  40. 40.
    Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244CrossRefPubMedGoogle Scholar
  41. 41.
    Bailly V, Zhang Z, Meier W, Cate R, Sanicola M, Bonventre JV (2002) Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 277:39739–39748CrossRefPubMedGoogle Scholar
  42. 42.
    Amin RP, Vickers AE, Sistare F, Thompson KL, Roman RJ, Lawton M, Kramer J, Hamadeh HK, Collins J, Grissom S, Bennett L, Tucker CJ, Wild S, Kind C, Oreffo V, Davis JW 2nd, Curtiss S, Naciff JM, Cunningham M, Tennant R, Stevens J, Car B, Bertram TA, Afshari CA (2004) Identification of putative gene based markers of renal toxicity. Environ Health Perspect 112:465–479CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang J, Goering PL, Espandiari P, Shaw M, Bonventre JV, Vaidya VS, Brown RP, Keenan J, Kilty CG, Sadrieh N, Hanig JP (2009) Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine. Toxicol Pathol 37:629–643CrossRefPubMedGoogle Scholar
  44. 44.
    Kuehn EW, Park KM, Somlo S, Bonventre JV (2002) Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283:F1326–1336PubMedGoogle Scholar
  45. 45.
    Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286:F552–563CrossRefPubMedGoogle Scholar
  46. 46.
    van Timmeren MM, Bakker SJ, Vaidya VS, Bailly V, Schuurs TA, Damman J, Stegeman CA, Bonventre JV, van Goor H (2006) Tubular kidney injury molecule-1 in protein-overload nephropathy. Am J Physiol Renal Physiol 291:F456–464CrossRefPubMedGoogle Scholar
  47. 47.
    Prozialeck WC, Vaidya VS, Liu J, Waalkes MP, Edwards JR, Lamar PC, Bernard AM, Dumont X, Bonventre JV (2007) Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity. Kidney Int 72:985–993CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL (2008) Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol Sci 101:159–170CrossRefPubMedGoogle Scholar
  49. 49.
    Prozialeck WC, Edwards JR, Lamar PC, Liu J, Vaidya VS, Bonventre JV (2009) Expression of kidney injury molecule-1 (Kim-1) in relation to necrosis and apoptosis during the early stages of Cd-induced proximal tubule injury. Toxicol Appl Pharmacol 238:306–314CrossRefPubMedGoogle Scholar
  50. 50.
    Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73:863–869CrossRefPubMedGoogle Scholar
  51. 51.
    van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 212:209–217CrossRefPubMedGoogle Scholar
  52. 52.
    Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, MacKinnon RW, Li L, Balakrishnan VS, Pereira BJ, Bonventre JV, Jaber BL (2007) Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 18:904–912CrossRefPubMedGoogle Scholar
  53. 53.
    Waikar SS, Bonventre JV (2008) Biomarkers for the diagnosis of acute kidney injury. Nephron Clin Pract 109:c192–197CrossRefPubMedGoogle Scholar
  54. 54.
    Liangos O, Tighiouart H, Perianayagam MC, Kolyada A, Han WK, Wald R, Bonventre JV, Jaber BL (2009) Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 14:423–431CrossRefPubMedGoogle Scholar
  55. 55.
    Kamijo-Ikemori A, Sugaya T, Obama A, Hiroi J, Miura H, Watanabe M, Kumai T, Ohtani-Kaneko R, Hirata K, Kimura K (2006) Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction. Am J Pathol 169:1107–1117CrossRefPubMedGoogle Scholar
  56. 56.
    Negishi K, Noiri E, Maeda R, Portilla D, Sugaya T, Fujita T (2008) Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int 73:1374–1384CrossRefPubMedGoogle Scholar
  57. 57.
    Maatman RG, van de Westerlo EM, van Kuppevelt TH, Veerkamp JH (1992) Molecular identification of the liver-and the heart-type fatty acid-binding proteins in human and rat kidney. Use of the reverse transcriptase polymerase chain reaction. Biochem J 288:285–290PubMedGoogle Scholar
  58. 58.
    Kamijo-Ikemori A, Sugaya T, Kimura K (2006) Urinary fatty acid binding protein in renal disease. Clin Chim Acta 374:1–7CrossRefPubMedGoogle Scholar
  59. 59.
    Negishi K, Noiri E, Doi K, Maeda-Mamiya R, Sugaya T, Portilla D, Fujita T (2009) Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury. Am J Pathol 174:1154–1159CrossRefPubMedGoogle Scholar
  60. 60.
    Nakamura T, Sugaya T, Node K, Ueda Y, Koide H (2006) Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am J Kidney Dis 47:439–444CrossRefPubMedGoogle Scholar
  61. 61.
    Ferguson MA, Vaidya VS, Waikar SS, Collings FB, Sunderland KE, Gioules CJ, Bonventre JV (2009) Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int 77:708–714CrossRefPubMedGoogle Scholar
  62. 62.
    Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, Noiri E, Devarajan P (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472CrossRefPubMedGoogle Scholar
  63. 63.
    Liu KD, Altmann C, Smits G, Krawczeski CD, Edelstein CL, Devarajan P, Faubel S (2009) Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study. Crit Care 13:R104CrossRefPubMedGoogle Scholar
  64. 64.
    Beger RD, Holland RD, Sun J, Schnackenberg LK, Moore PC, Dent CL, Devarajan P, Portilla D (2008) Metabonomics of acute kidney injury in children after cardiac surgery. Pediatr Nephrol 23:977–984CrossRefPubMedGoogle Scholar
  65. 65.
    Schwartz GJ, Work DF (2009) Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol 4:1832–1843CrossRefPubMedGoogle Scholar
  66. 66.
    Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122CrossRefPubMedGoogle Scholar
  67. 67.
    Perianayagam MC, Seabra VF, Tighiouart H, Liangos O, Jaber BL (2009) Serum cystatin C for prediction of dialysis requirement or death in acute kidney injury: a comparative study. Am J Kidney Dis 54:1025–1033CrossRefPubMedGoogle Scholar
  68. 68.
    Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, Schibler KR (2008) Urinary NGAL in premature infants. Pediatr Res 64:423–428CrossRefPubMedGoogle Scholar
  69. 69.
    Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, Wong HR (2008) Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36:1297–1303CrossRefPubMedGoogle Scholar
  70. 70.
    Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, Parikh CR, Goldstein SL (2007) Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care 11:R84CrossRefPubMedGoogle Scholar
  71. 71.
    Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P (2006) Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21:856–863CrossRefPubMedGoogle Scholar
  72. 72.
    Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P (2006) Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 6:1639–1645CrossRefPubMedGoogle Scholar
  73. 73.
    Nepal M, Bock GH, Sehic AM, Schultz MF, Zhang PL (2008) Kidney injury molecule-1 expression identifies proximal tubular injury in urate nephropathy. Ann Clin Lab Sci 38:210–214PubMedGoogle Scholar
  74. 74.
    Nguyen MT, Dent CL, Ross GF, Harris N, Manning PB, Mitsnefes MM, Devarajan P (2008) Urinary aprotinin as a predictor of acute kidney injury after cardiac surgery in children receiving aprotinin therapy. Pediatr Nephrol 23:1317–1326CrossRefPubMedGoogle Scholar
  75. 75.
    Herrero-Morin JD, Malaga S, Fernandez N, Rey C, Dieguez MA, Solis G, Concha A, Medina A (2007) Cystatin C and beta2-microglobulin: markers of glomerular filtration in critically ill children. Crit Care 11:R59CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2010

Authors and Affiliations

  • Zubaida Al-Ismaili
    • 1
  • Ana Palijan
    • 1
  • Michael Zappitelli
    • 1
  1. 1.Department of Pediatrics, Division of Nephrology, Montreal Children’s HospitalMcGill University Health CentreMontrealCanada

Personalised recommendations