Advertisement

Pediatric Nephrology

, Volume 25, Issue 6, pp 1005–1016 | Cite as

Molecular anatomy of the kidney: what have we learned from gene expression and functional genomics?

  • Bree Rumballe
  • Kylie Georgas
  • Lorine Wilkinson
  • Melissa LittleEmail author
Review

Abstract

The discipline of paediatric nephrology encompasses the congenital nephritic syndromes, renal dysplasias, neonatal renal tumours, early onset cystic disease, tubulopathies and vesicoureteric reflux, all of which arise due to defects in normal kidney development. Indeed, congenital anomalies of the kidney and urinary tract (CAKUT) represent 20–30% of prenatal anomalies, occurring in 1 in 500 births. Developmental biologists have studied the anatomical and morphogenetic processes involved in kidney development for the last five decades. However, with the advent of transgenic mice, the sequencing of the genome, improvements in mutation detection and the advent of functional genomics, our understanding of the molecular basis of kidney development has grown significantly. Here we discuss how the advent of new genetic and genomics approaches has added to our understanding of kidney development and paediatric renal disease, as well as identifying areas in which we are still lacking knowledge.

Keywords

Functional genomics Gene expression Kidney development Metanephros Mesonephros Microarray Pronephros 

References

  1. 1.
    Grobstein C (1956) Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res 10:424–440CrossRefPubMedGoogle Scholar
  2. 2.
    Grobstein C (1953) Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 172:869–870CrossRefPubMedGoogle Scholar
  3. 3.
    Unsworth B, Grobstein C (1970) Induction of kidney tubules in mouse metanephrogenic mesenchyme by various embryonic mesenchymal tissues. Dev Biol 21:547–556CrossRefPubMedGoogle Scholar
  4. 4.
    Sariola H, Ekblom P, Henke-Fahle S (1989) Embryonic neurons as in vitro inducers of differentiation of nephrogenic mesenchyme. Dev Biol 132:271–281CrossRefPubMedGoogle Scholar
  5. 5.
    Leimeister C, Bach A, Woolf AS, Gessler M (1999) Screen for genes regulated during early kidney morphogenesis. Dev Genet 24:273–283CrossRefPubMedGoogle Scholar
  6. 6.
    Plisov SY, Ivanov SV, Yoshino K, Dove LF, Plisova TM, Higinbotham KG, Karavanova I, Lerman M, Perantoni AO (2000) Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. Genesis 27:22–31CrossRefPubMedGoogle Scholar
  7. 7.
    Stuart RO, Bush KT, Nigam SK (2001) Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci USA 98:5649–5654CrossRefPubMedGoogle Scholar
  8. 8.
    Valerius MT, Patterson LT, Witte DP, Potter SS (2002) Microarray analysis of novel cell lines representing two stages of metanephric mesenchyme differentiation. Mech Dev 112:219–232CrossRefPubMedGoogle Scholar
  9. 9.
    Livesey R (2002) Have microarrays failed to deliver for developmental biology? Genome Biol 3:comment 2009Google Scholar
  10. 10.
    Schwab K, Patterson LT, Aronow BJ, Luckas R, Liang HC, Potter SS (2003) A catalogue of gene expression in the developing kidney. Kidney Int 64:1588–1604CrossRefPubMedGoogle Scholar
  11. 11.
    Challen G, Gardiner B, Caruana G, Kostoulias X, Martinez G, Crowe M, Taylor DF, Bertram J, Little M, Grimmond SM (2005) Temporal and spatial transcriptional programs in murine kidney development. Physiol Genomics 23:159–171CrossRefPubMedGoogle Scholar
  12. 12.
    Stuart RO, Bush KT, Nigam SK (2003) Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney Int 64:1997–2008CrossRefPubMedGoogle Scholar
  13. 13.
    Caruana G, Cullen-McEwen L, Nelson AL, Kostoulias X, Woods K, Gardiner B, Davis MJ, Taylor DF, Teasdale RD, Grimmond SM, Little MH, Bertram JF (2006) Spatial gene expression in the T-stage mouse metanephros. Gene Expr Patterns 6:807–825CrossRefPubMedGoogle Scholar
  14. 14.
    Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, Mori K, Li JY, Lu B, Costantini F, Schiffer M, Bottinger E, Barasch J (2005) Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol 16:1993–2002CrossRefPubMedGoogle Scholar
  15. 15.
    Takasato M, Osafune K, Matsumoto Y, Kataoka Y, Yoshida N, Meguro H, Aburatani H, Asashima M, Nishinakamura R (2004) Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice. Mech Dev 121:547–557CrossRefPubMedGoogle Scholar
  16. 16.
    Challen GA, Martinez G, Davis MJ, Taylor DF, Crowe M, Teasdale RD, Grimmond SM, Little MH (2004) Identifying the molecular phenotype of renal progenitor cells. J Am Soc Nephrol 15:2344–2357CrossRefPubMedGoogle Scholar
  17. 17.
    Yano N, Endoh M, Fadden K, Yamashita H, Kane A, Sakai H, Rifai A (2000) Comprehensive gene expression profile of the adult human renal cortex: analysis by cDNA array hybridization. Kidney Int 57:1452–1459CrossRefPubMedGoogle Scholar
  18. 18.
    Higgins JP, Wang L, Kambham N, Montgomery K, Mason V, Vogelmann SU, Lemley KV, Brown PO, Brooks JD, van de Rijn M (2004) Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol Biol Cell 15:649–656CrossRefPubMedGoogle Scholar
  19. 19.
    Brunskill EW, Aronow BJ, Georgas K, Rumballe B, Valerius MT, Aronow J, Kaimal V, Jegga AG, Grimmond S, McMahon AP, Patterson LT, Little MH, Potter SS (2008) Atlas of gene expression in the developing kidney at microanatomic resolution. Dev Cell 15:781–791CrossRefPubMedGoogle Scholar
  20. 20.
    McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, Lessard JL, Little MH, Potter SS, Wilder EL, Zhang P (2008) GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 19:667–671CrossRefPubMedGoogle Scholar
  21. 21.
    Airik R, Karner M, Karis A, Karner J (2005) Gene expression analysis of Gata3-/- mice by using cDNA microarray technology. Life Sci 76:2559–2568CrossRefPubMedGoogle Scholar
  22. 22.
    Ma Z, Gong Y, Patel V, Karner CM, Fischer E, Hiesberger T, Carroll TJ, Pontoglio M, Igarashi P (2007) Mutations of HNF-1beta inhibit epithelial morphogenesis through dysregulation of SOCS-3. Proc Natl Acad Sci USA 104:20386–20391CrossRefPubMedGoogle Scholar
  23. 23.
    Cui S, Li C, Ema M, Weinstein J, Quaggin SE (2005) Rapid isolation of glomeruli coupled with gene expression profiling identifies downstream targets in Pod1 knockout mice. J Am Soc Nephrol 16:3247–3255CrossRefPubMedGoogle Scholar
  24. 24.
    Potter SS, Hartman HA, Kwan KM, Behringer RR, Patterson LT (2007) Laser capture-microarray analysis of Lim1 mutant kidney development. Genesis 45:432–329CrossRefPubMedGoogle Scholar
  25. 25.
    Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18:317–323CrossRefPubMedGoogle Scholar
  26. 26.
    Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, McManus MT, Benzing T, Miner JH (2008) Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 19:2150–2158CrossRefPubMedGoogle Scholar
  27. 27.
    Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 19:2069–2075CrossRefPubMedGoogle Scholar
  28. 28.
    Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, Merkenschlager M, Holzman LB, Zhang W, Mundel P, Bottinger EP (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169CrossRefPubMedGoogle Scholar
  29. 29.
    Davies JA, Brandli AW (1996) A computer database for kidney development. Trends Genet 12:322Google Scholar
  30. 30.
    Davies JA (1999) The kidney development database. Dev Genet 24:194–198CrossRefPubMedGoogle Scholar
  31. 31.
    Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, Lullmann-Rauch R, Blanz J, Zhang KW, Stankovich J, Kalnins RM, Dowling JP, Andermann E, Andermann F, Faldini E, D'Hooge R, Vadlamudi L, Macdonell RA, Hodgson BL, Bayly MA, Savige J, Mulley JC, Smyth GK, Power DA, Saftig P, Bahlo M (2008) Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 82:673–684CrossRefPubMedGoogle Scholar
  32. 32.
    Barr MM (2005) Caenorhabditis elegans as a model to study renal development and disease: sexy cilia. J Am Soc Nephrol 16:305–312CrossRefPubMedGoogle Scholar
  33. 33.
    Lipton J (2005) Mating worms and the cystic kidney: Caenorhabditis elegans as a model for renal disease. Pediatr Nephrol 20:1531–1536CrossRefPubMedGoogle Scholar
  34. 34.
    Majumdar A, Drummond IA (2000) The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol 222:147–157CrossRefPubMedGoogle Scholar
  35. 35.
    Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093CrossRefPubMedGoogle Scholar
  36. 36.
    Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667PubMedGoogle Scholar
  37. 37.
    Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84CrossRefPubMedGoogle Scholar
  38. 38.
    Jones EA (2005) Xenopus: a prince among models for pronephric kidney development. J Am Soc Nephrol 16:313–321CrossRefPubMedGoogle Scholar
  39. 39.
    Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–23570CrossRefPubMedGoogle Scholar
  40. 40.
    Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL (2008) A dual requirement for Iroquois genes during Xenopus kidney development. Development 135:3197–3207CrossRefPubMedGoogle Scholar
  41. 41.
    Jung AC, Denholm B, Skaer H, Affolter M (2005) Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol 16:322–328CrossRefPubMedGoogle Scholar
  42. 42.
    Weavers H, Prieto-Sanchez S, Grawe F, Garcia-Lopez A, Artero R, Wilsch-Brauninger M, Ruiz-Gomez M, Skaer H, Denholm B (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322–326CrossRefPubMedGoogle Scholar
  43. 43.
    Liu J, Ghanim M, Xue L, Brown CD, Iossifov I, Angeletti C, Hua S, Negre N, Ludwig M, Stricker T, Al-Ahmadie HA, Tretiakova M, Camp RL, Perera-Alberto M, Rimm DL, Xu T, Rzhetsky A, White KP (2009) Analysis of Drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323:1218–1222CrossRefPubMedGoogle Scholar
  44. 44.
    Singh SR, Hou SX (2009) Multipotent stem cells in the Malpighian tubules of adult Drosophila melanogaster. J Exp Biol 212:413–423CrossRefPubMedGoogle Scholar
  45. 45.
    Igarashi P (2004) Kidney-specific gene targeting. J Am Soc Nephrol 15:2237–2239CrossRefPubMedGoogle Scholar
  46. 46.
    Rubera I, Hummler E, Beermann F (2009) Transgenic mice and their impact on kidney research. Pflugers Arch 458:211–222CrossRefPubMedGoogle Scholar
  47. 47.
    Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181CrossRefPubMedGoogle Scholar
  48. 48.
    Shan J, Jokela T, Skovorodkin I, Vainio S (2010) Mapping of the fate of cell lineages generated from cells that express the Wnt4 gene by time-lapse during kidney development. Differentiation 79:57–64Google Scholar
  49. 49.
    Li J, Chen F, Epstein JA (2000) Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice. Genesis 26:162–164CrossRefPubMedGoogle Scholar
  50. 50.
    Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F (2004) Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 113:1051–1058PubMedGoogle Scholar
  51. 51.
    Eremina V, Baelde HJ, Quaggin SE (2007) Role of the VEGF–a signaling pathway in the glomerulus: evidence for crosstalk between components of the glomerular filtration barrier. Nephron Physiol 106:32–37CrossRefGoogle Scholar
  52. 52.
    Mugford JW, Sipila P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324:88–98CrossRefPubMedGoogle Scholar
  53. 53.
    Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS, McMahon AP, Bonventre JV (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291CrossRefPubMedGoogle Scholar
  54. 54.
    Hartman HA, Lai HL, Patterson LT (2007) Cessation of renal morphogenesis in mice. Dev Biol 310:379–387CrossRefPubMedGoogle Scholar
  55. 55.
    Mittaz L, Ricardo S, Martinez G, Kola I, Kelly DJ, Little MH, Hertzog PJ, Pritchard MA (2005) Neonatal calyceal dilation and renal fibrosis resulting from loss of Adamts-1 in mouse kidney is due to a developmental dysgenesis. Nephrol Dial Transplant 20:419–423CrossRefPubMedGoogle Scholar
  56. 56.
    Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114:795–804PubMedGoogle Scholar
  57. 57.
    Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592CrossRefPubMedGoogle Scholar
  58. 58.
    Price KL, Long DA, Jina N, Liapis H, Hubank M, Woolf AS, Winyard PJ (2007) Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiol Genomics 28:193–202PubMedGoogle Scholar
  59. 59.
    Hilpert J, Wogensen L, Thykjaer T, Wellner M, Schlichting U, Orntoft TF, Bachmann S, Nykjaer A, Willnow TE (2002) Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D3 metabolism. Kidney Int 62:1672–1681CrossRefPubMedGoogle Scholar
  60. 60.
    Norman LP, Jiang W, Han X, Saunders TL, Bond JS (2003) Targeted disruption of the meprin beta gene in mice leads to underrepresentation of knockout mice and changes in renal gene expression profiles. Mol Cell Biol 23:1221–1230CrossRefPubMedGoogle Scholar
  61. 61.
    McReynolds MR, Taylor-Garcia KM, Greer KA, Hoying JB, Brooks HL (2005) Renal medullary gene expression in aquaporin-1 null mice. Am J Physiol Renal Physiol 288:F315–F321CrossRefPubMedGoogle Scholar
  62. 62.
    Bachvarov D, Bachvarova M, Koumangaye R, Klein J, Pesquero JB, Neau E, Bader M, Schanstra JP, Bascands JL (2006) Renal gene expression profiling using kinin B1 and B2 receptor knockout mice reveals comparable modulation of functionally related genes. Biol Chem 387:15–22CrossRefPubMedGoogle Scholar
  63. 63.
    Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61CrossRefPubMedGoogle Scholar
  64. 64.
    Riera M, Burtey S, Fontes M (2006) Transcriptome analysis of a rat PKD model: Importance of genes involved in extracellular matrix metabolism. Kidney Int 69:1558–1563CrossRefPubMedGoogle Scholar
  65. 65.
    Schwab K, Hartman HA, Liang HC, Aronow BJ, Patterson LT, Potter SS (2006) Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development. Dev Biol 293:540–554CrossRefPubMedGoogle Scholar
  66. 66.
    Shirota S, Yoshida T, Sakai M, Kim JI, Sugiura H, Oishi T, Nitta K, Tsuchiya K (2006) Correlation between the expression level of c-maf and glutathione peroxidase-3 in c-maf -/- mice kidney and c-maf overexpressed renal tubular cells. Biochem Biophys Res Commun 348:501–506CrossRefPubMedGoogle Scholar
  67. 67.
    Schwab KR, Patterson LT, Hartman HA, Song N, Lang RA, Lin X, Potter SS (2007) Pygo1 and Pygo2 roles in Wnt signaling in mammalian kidney development. BMC Biol 5:15CrossRefPubMedGoogle Scholar
  68. 68.
    Cai Q, McReynolds MR, Keck M, Greer KA, Hoying JB, Brooks HL (2007) Vasopressin receptor subtype 2 activation increases cell proliferation in the renal medulla of AQP1 null mice. Am J Physiol Renal Physiol 293:F1858–F1864CrossRefPubMedGoogle Scholar
  69. 69.
    Done SC, Takemoto M, He L, Sun Y, Hultenby K, Betsholtz C, Tryggvason K (2008) Nephrin is involved in podocyte maturation but not survival during glomerular development. Kidney Int 73:697–704CrossRefPubMedGoogle Scholar
  70. 70.
    Kim YS, Kang HS, Herbert R, Beak JY, Collins JB, Grissom SF, Jetten AM (2008) Kruppel-like zinc finger protein Glis2 is essential for the maintenance of normal renal functions. Mol Cell Biol 28:2358–2367CrossRefPubMedGoogle Scholar
  71. 71.
    Valerius MT, McMahon AP (2008) Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation. Gene Expr Patterns 8:297–306CrossRefPubMedGoogle Scholar
  72. 72.
    Okada S, Misaka T, Tanaka Y, Matsumoto I, Ishibashi K, Sasaki S, Abe K (2008) Aquaporin-11 knockout mice and polycystic kidney disease animals share a common mechanism of cyst formation. FASEB J 22:3672–3684CrossRefPubMedGoogle Scholar
  73. 73.
    Georgas K, Rumballe B, Valerius MT, Chiu HS, Thiagarajan RD, Lesieur E, Aronow BJ, Brunskill EW, Combes AN, Tang D, Taylor D, Grimmond SM, Potter SS, McMahon AP, Little MH (2009) Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment. Dev Biol 332:273–286CrossRefPubMedGoogle Scholar
  74. 74.
    Drummond I (2003) Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol 13:357–365CrossRefPubMedGoogle Scholar
  75. 75.
    Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2009

Authors and Affiliations

  • Bree Rumballe
    • 1
  • Kylie Georgas
    • 1
  • Lorine Wilkinson
    • 1
  • Melissa Little
    • 1
    Email author
  1. 1.Institute for Molecular BioscienceThe University of QueenslandSt. LuciaAustralia

Personalised recommendations