Pediatric Nephrology

, Volume 24, Issue 11, pp 2109–2119 | Cite as

Taking a hard look at the pathogenesis of childhood HIV-associated nephropathy



Childhood human immunodeficiency virus-associated nephropathy (HIVAN) is defined by the presence of proteinuria associated with mesangial hyperplasia and/or global-focal segmental glomerulosclerosis, in combination with the microcystic transformation of renal tubules. This review discusses the pathogenesis of childhood HIVAN and explores how the current pathological paradigm for HIVAN in adults can be applied to children. The Human Immunodeficiency Virus-1 (HIV-1) induces renal epithelial injury in African American children with a genetic susceptibility to develop HIVAN. The mechanism is not well understood, since renal epithelial cells harvested from children with HIVAN do not appear to be productively infected. Children with HIVAN show a renal up-regulation of heparan sulphate proteoglycans and a recruitment of circulating heparin-binding growth factors, chemokines, and mononuclear cells. Macrophages appear to establish a renal HIV-reservoir and transfer viral particles to renal epithelial cells. All of these changes seem to trigger an aberrant and persistent renal epithelial proliferative response. The paradigm that viral products produced by infected renal epithelial cells per se induce the proliferation of these cells is not supported by data available in children with HIVAN. More research is needed to elucidate how HIV-1 induces renal epithelial injury and proliferation in HIV-infected children.


Heparin-binding growth factors HIV-associated nephropathy Infection of renal tubular epithelial cells Pediatric AIDS Renal disease 



This study was supported in part by the National Institutes of Health grants: R01-HL55605, R01-DK049419, K12RR17613, R21-AT002278.


  1. 1.
    UNAIDS “2007 AIDS Epidemic update”. Joint United Nations Programme on HIV/AIDS. UNAIDS, Geneva. Available at HIVData/EpiUpdate/EpicUpdArchive/2007
  2. 2.
    Strauss J, Abitbol CL, Zilleruelo G, Scott G, Paredes A, Malaga S, Montane B, Mitchell C, Parks W, Pardo V (1989) Renal diseases in children with the acquired immunodeficiency syndrome. N Engl J Med 321:625–630PubMedCrossRefGoogle Scholar
  3. 3.
    Connor E, Gupta S, Joshi V, DiCarlo F, Offenberger J, Minnefor A, Uy C, Oleske J, Ende N (1988) Acquired immunodeficiency syndrome renal diseases in children. J Pediatr 113:39–44PubMedCrossRefGoogle Scholar
  4. 4.
    Ray PE, Rakusan TM, Loechelt BJ, Selby DM, Liu X-H, Chandra RS (1998) Human immunodeficiency virus (HIV)-associated nephropathy in the children from the Washington D.C. area: 12 years’ experience. Semin Nephrol 18:396–405PubMedGoogle Scholar
  5. 5.
    McCulloch MI, Ray PE (2008) Kidney disease in HIV-positive children. Semin Nephrol 28:585–594PubMedCrossRefGoogle Scholar
  6. 6.
    Rao TK, Filippone EJ, Nicastri AD, Landesman SH, Frank S, Chen CK, Friedman EA (1984) Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N Engl J Med 310:669–673PubMedGoogle Scholar
  7. 7.
    Pardo V, Aldana M, Colton RM, Fischl MA, Jaffe D, Moskowitz L, Hensley T, Bourgoignie JJ (1984) Glomerular lesions in the acquired immunodeficiency syndrome. Ann Intern Med 101:429–434PubMedGoogle Scholar
  8. 8.
    D'Agatii V, Appel GB (1997) HIV infection and the kidney. J Am Soc Nephrol 8:138–152Google Scholar
  9. 9.
    Barisoni L, Kriz W, Mundel P, D’ Agati V (1999) The dysregulated podocyte phenotype: A novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10:51–61PubMedGoogle Scholar
  10. 10.
    Dijkman HB, Weening JJ, Smeets B, Verrijp KC, van Kuppevelt TH, Assmann KK, Steenberger EJ, Wetzels JE (2006) Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int 70:388–344CrossRefGoogle Scholar
  11. 11.
    Albaqumi M, Soos TJ, Barisoni L, Nelson PJ (2006) Collapsing glomerulopathy. J Am Soc Nephrol 17:2854–2863PubMedCrossRefGoogle Scholar
  12. 12.
    Pizzo PA, Wilfert CM (1994) Pediatric AIDS. The challenge of HIV infection in infants, children, and adolescents. 2nd edn., Williams & Wilkins, BaltimoreGoogle Scholar
  13. 13.
    Levy JA (2007) HIV and the pathogenesis of AIDS. 3rd edn. ASM Press, Washington D.C.Google Scholar
  14. 14.
    Hanna Z, Kay DG, Rebai N, Guimond A, Jothy S, Jolicoeur P (1998) Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95:163–175PubMedCrossRefGoogle Scholar
  15. 15.
    Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, Jones O, Doodnauth D, Davis H, Sill A, O’ Driscoll P, Huso D, Fouts T, Lewis G, Hill M, Kamin-Lewis R, Wei C, Ray P, Gallo RC, Reitz M, Byrant J (2001) An HIV-1 transgenic rat that develops HIV-related pathology and immunological dysfunction. Proc Natl Acad Sci USA 96:9271–9276CrossRefGoogle Scholar
  16. 16.
    Shirai A, Klinman DM (1993) Immunization with recombinant gp160 prolongs the survival of HIV-transgenic mice. AIDS Res Hum Retroviruses 9:979–983PubMedCrossRefGoogle Scholar
  17. 17.
    Kopp JB, Klotman ME, Adler SH, Bruggeman LA, Dickie P, Marinos NJ, Eckhaus ME, Bryant JL, Notkins AL, Klotman PE (1992) Progressive glomerulosclerosis and enhanced renal accumulation of basement membrane components in mice transgenic for human immunodeficiency virus type 1 genes. Proc Natl Acad Sci USA 88:1577–1581CrossRefGoogle Scholar
  18. 18.
    Dickie P, Roberts A, Uwiera R, Witmer J, Sharma K, Kopp JB (2004) Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy. Virology 322:69–81PubMedCrossRefGoogle Scholar
  19. 19.
    Zhong J, Zuo Y, Ma J, Fogo AB, Jolicoeur P, Ichikawa I, Matsusaka T (2005) Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1 associated nephropathy. Kidney Int 68:1048–1060PubMedCrossRefGoogle Scholar
  20. 20.
    Zuo Y, Matusaka T, Zhong J, Ma J, Ma LJ, Hanna Z, Jolicoeur P, Fogo AB, Ichikawa I (2006) HIV-1 genes and nef synergistically damage podocytes, leading to glomerulosclerosis. J Am Soc Nephrol 17:2832–2843PubMedCrossRefGoogle Scholar
  21. 21.
    He JC, Husain M, Sunamoto H, D’Agati D, Klotman ME, Iyengar R, Klotman PE (2004) Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat-3 and MAPK1, 2 pathways. J Clin Invest 114:643–651PubMedGoogle Scholar
  22. 22.
    Lu TC, He JC, Klotman PE (2007) Podocytes in HIV-associated nephropathy. Nephron Clin Pract 106:c67–c71PubMedCrossRefGoogle Scholar
  23. 23.
    Marras D, Bruggeman LA, Gao F, Tanji N, Mansukhani MM, Cara A, Ross MD, Gusella GL, Benson G, D’Agati VD, Hahn BH, Klotman ME, Klotman PE (2002) Replication and compartmentalization of HIV-1 in the kidney epithelium of patients with HIV-associated nephropathy. Nat Med 8:522–526PubMedCrossRefGoogle Scholar
  24. 24.
    Wintson JA, Bruggeman LA, Ross MD, Jacobson L, Ross L, D’Agati VD, Klotman PE, Klotman ME (2001) Nephropathy and establishment of a renal reservoir of HIV type 1 during primary infection. N Engl J Med 344:1979–1984CrossRefGoogle Scholar
  25. 25.
    Alpers CE, Kowalewska J (2007) Emerging paradigms in the renal pathology of viral diseases. Clin J Am Soc Nephrol 2:S6–S12PubMedCrossRefGoogle Scholar
  26. 26.
    Kimmel PL, Barisoni L, Kopp JB (2003) Pathogenesis and treatment of HIV-associated renal diseases: lessons from clinical and animal studies, molecular pathologic correlations, and genetic investigations. Ann Intern Med 139:214–216PubMedGoogle Scholar
  27. 27.
    Freedman BI, Soucie JM, Stone SM, Pegram S (1999) Familial clustering of end stage renal disease in blacks with HIV-associated nephropathy. Am J Kidney Dis 34:254–258PubMedCrossRefGoogle Scholar
  28. 28.
    Gharavi AG, Ahmad T, Wong RD, Hooshyar R, Vaughn J, Oller S, Frankel RZ, Bruggeman LA, D’ Agati VD, Klotman PE, Lifton RP (2004) Mapping a locus for susceptibility to HIV-1 associated nephropathy to mouse chromosome 3. Proc Natl Acad Sci USA 101:2488–2493PubMedCrossRefGoogle Scholar
  29. 29.
    Kim JM, Wu H, Green C, Winkler CA, Kopp JB, Miner JH, Unanue ER, Shaw AS (2003) CD-2 associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300:1298–1300PubMedCrossRefGoogle Scholar
  30. 30.
    Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Kobert SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175–1184PubMedCrossRefGoogle Scholar
  31. 31.
    Kao WH, Klag MJ, Meoni LA, Reich D, Berthier-Schaad Y, Li M, Coresh J, Patterson N, Tandom A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley-Brown D, Winkler CA, Smith MW, Parek RS, on behalf of the Family Investigation of Nephropathy and Diabetes (FIND) research group (2008) MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat Genet 40:1185–1192PubMedCrossRefGoogle Scholar
  32. 32.
    Arrondel C, Vodovar N, Knebelmann B, Grunfeld J-P, Gubler M-C, Antignac C, Heidet L (2001) Expression of the nonmuscle myosin Heavy Chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner Syndromes. J Am Soc Nephrol 13:65–74Google Scholar
  33. 33.
    Pantophlet R, Burton DR (2006) Gp120: Target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24:739–769PubMedCrossRefGoogle Scholar
  34. 34.
    Crublet E, Andrieu J-P, Vives RR, Lortat-Jacob H (2008) The HIV-1 envelope glycoprotein gp120 features four heparin sulfate binding domains, including the co-receptor binding site. J Biol Chem 283:15193–15200PubMedCrossRefGoogle Scholar
  35. 35.
    Zagury J-F, Sill A, Blattner W, Lachgar A, Le Buanec H, Richardson M, Rappaport J, Hendel H, Bizzini B, Grngeri A, Carcagno M, Criscuolo M, Burny A, Gallo RC, Zagury D (1998) Antibodies to the HIV-1 Tat protein correlated with nonprogression to AIDS: A rationale for the use of Tat toxoid as an HIV-1 vaccine. J Human Virol 1:282–292Google Scholar
  36. 36.
    Ray PE, Lian X, Rakusan T, Liu XH (2004) A 20-year history of childhood HIV-associated nephropathy. Pediatr Nephrol 19:1075–1092PubMedCrossRefGoogle Scholar
  37. 37.
    Conaldi PG, Botelli A, Wade-Evans A, Biancone L, Baj A, Cantaluppi V, Serra C, Dolei A, Toniolo A, Camussi G (2000) HIV-persistent infection and cytokine induction in mesangial cells: a potential mechanism for HIV-associated glomerulosclerosis. AIDS 14:2045–2047PubMedCrossRefGoogle Scholar
  38. 38.
    Green DF, Resnick L, Bourgoignie JJ (1992) HIV infects glomerular endothelial and mesangial but not epithelial cells in vitro. Kidney Int 41:956–960PubMedCrossRefGoogle Scholar
  39. 39.
    Conaldi PG, Botelli A, Baj A, Serra C, Fiore L, Federico G, Bussolati B, Camussi G (2002) Human immunodeficiency virus-1 tat induces hyperproliferation and dysregulation of renal glomerular epithelial cells. Am J Pathol 161:53–61PubMedGoogle Scholar
  40. 40.
    Doublier S, Zennaro C, Spatola T, Lupia E, Botelli A, Deregibus MC, Carraro M, Conaldi PG, Camussi G (2007) HIV-1 Tat reduces nephrin in human podocytes: a potential mechanism for enhanced glomerular permeability in HIV-associated nephropathy. AIDS 19:423–432CrossRefGoogle Scholar
  41. 41.
    Eremina V, Sood M, Haigh J, Nagy J, Nagy A, Lajoi G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716PubMedGoogle Scholar
  42. 42.
    Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF-inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136PubMedCrossRefGoogle Scholar
  43. 43.
    Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombinin S, Raffeld M, Cafaro A, Chang HK, Brady JN, Gallo RC (1994) Synergy between basic FGF and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371:674–680PubMedCrossRefGoogle Scholar
  44. 44.
    Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphteria toxin-induced podocyte depletion in rats expressing human diphteria toxin receptor transgene. J Am Soc Nephrol 16:2941–2952PubMedCrossRefGoogle Scholar
  45. 45.
    Striker LJ, Peten EP, Elliot SJ, Doi T, Striker G (1991) Biology of disease. Mesangial cell turnover: effect of heparin and peptide growth factors. Lab Invest 64:446–456PubMedGoogle Scholar
  46. 46.
    Ray PE, Liu X-H, Xu L, Rakusan T (1999) Accumulation of bFGF in children with HIV-1 associated hemolytic uremic syndrome. Pediatr Nephrol 13:586–593PubMedCrossRefGoogle Scholar
  47. 47.
    Tokizawa S, Shimizu N, Hui-Yu L, Deyu F, Haraguchi Y, Oite T, Hoshino H (2000) Infection of mesangial cells with HIV and SIV: identification of GPR1 as a coreceptor. Kidney Int 58:607–617PubMedCrossRefGoogle Scholar
  48. 48.
    Alpers CR, McClure J, Bursten SL (1992) Human mesangial cells are resistant to productive infection by multiple strains of human immunodeficiency virus types 1 and 2. Am J Kidney Dis 19:126–130PubMedGoogle Scholar
  49. 49.
    di Belgiosjoso GB, Genderini A, Vago L, Parravicini C, Bertoli S, Landriani N (1990) Absence of HIV antigens in renal tissue from patients with HIV-associated nephropathy. Nephrol Dial Transplant 5:489–492Google Scholar
  50. 50.
    Eitner F, Cui Y, Hudkins KL, Stokes MB, Segerer S, Mack M, Lewis PL, Abraham AA, Schlöndorff D, Gallo G, Kimmel PL, Alpers CE (2000) Chemokine receptors CCR5 and CXCR4 expression in HIV-associated kidney disease. J Am Soc Nephrol 11:856–867PubMedGoogle Scholar
  51. 51.
    Ray PE, Liu X-L, Robinson RL, Reid, W, Xu L, Owens JW, Jones OD, Denaro F, Davis HG, Bryant, JL (2003) A novel HIV-1 transgenic rat model of childhood HIV-1 associated nephropathy. Kidney Int 63:2242–2253PubMedCrossRefGoogle Scholar
  52. 52.
    Tinkle BT, Ngo L, Luciw PA, Maciag T, Jay G (1997) Human immunodeficiency virus-associated vasculopathy in transgenic mice. J Virol 71:4809–4814PubMedGoogle Scholar
  53. 53.
    Ray PE, Liu XH, Henry D, Dye L, Xu L, Orenstein JM, Schuztbank TE (1998) Infection of human primary renal epithelial cells with HIV-1 from children with HIV-associated nephropathy. Kidney Int 53:1217–1229PubMedCrossRefGoogle Scholar
  54. 54.
    Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erflie V, Schlondorff D (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6:769–775PubMedCrossRefGoogle Scholar
  55. 55.
    Conaldi PG, Biancone L, Botelli A, Wasde-Evans A, Racusen LC, Boccellino M, Orlandi V, Serra C, Camussi G, Toniolo A (1998) HIV-1 kills renal tubular epithelial cells in vitro by triggering an apoptotic pathway involving caspase activation and Fas upregulation. J Clin Invest 102:2041–2049PubMedCrossRefGoogle Scholar
  56. 56.
    Ray PE, Garcia Soler A, Xu L, Soderland C, Blumenthal R, Puri A (2005) Fusion of HIV-1 envelope expressing cells to human glomerular endothelial cells through a CCXR-4 mediated mechanism. Pediatr Nephrol 20:1401–1409PubMedCrossRefGoogle Scholar
  57. 57.
    Bruggeman LA, Dikman S, Meng C, Quaggin SE, Coffman TM, Klotman PE (1997) Nephropathy in human immunodeficiency virus-1 transgenic mice is due to renal transgene expression. J Clin Invest 100:84–92PubMedCrossRefGoogle Scholar
  58. 58.
    Ray PE, Bruggeman L, Weeks B, Kopp J, Bryant J, Owens M, Notkins A, Klotman PE (1994) Role of bFGF and its low affinity receptors in the pathogenesis of HIV-associated nephropathy in transgenic mice. Kidney Int 46:759–772PubMedCrossRefGoogle Scholar
  59. 59.
    Albini A, Benelli R, Presta M, Rusnati M, Ziche M, Rubartelli A, Paglialunga G, Bussolino F, Noonan D (1996) HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 12:289–297PubMedGoogle Scholar
  60. 60.
    Oravecz T, Pall M, Wang J, Roderiquez G, Ditto M, Norcross MA (1997) Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J Immunol 159:4587–4592PubMedGoogle Scholar
  61. 61.
    Tang P, Jerebtsova M, Przygodzki R, Ray PE (2005) Fibroblast growth factor-2 increases the renal recruitment and attachment of HVI-infected mononuclear cells to renal tubular epithelial cells. Pediatr Nephrol 20:1708–1716PubMedCrossRefGoogle Scholar
  62. 62.
    Khan F, Prolx F, Lingwood CA (2009) Detergent resistances globotriaosyl ceramide may define verotoxin/glomeruli-restricted hemolytic uremic syndrome pathology. Kidney Int doi: 10.1038/ki.2009.7
  63. 63.
    Liu X-H, Lingwood CA, Ray PE (1999) Recruitment of renal tubular epithelial cells expressing verotoxin-1 (Stx-1) receptors in HIV-1 transgenic mice with renal disease. Kidney Int 55:554–561PubMedCrossRefGoogle Scholar
  64. 64.
    Ray PE (2009) Shiga-like toxins and HIV “go through” glycosphingolipids and lipid rafts in renal cells. Kidney Int (in press)Google Scholar
  65. 65.
    Viard M, Parolini I, Rawat SS, Fecchi K, Sargiacomo M, Puri A, Blumenthal R (2004) The role of glycosphingolipids in HIV-signaling entry and pathogenesis. Glycoconj J 20:213–222PubMedCrossRefGoogle Scholar
  66. 66.
    Liu XH, Aigner A, Wellstein A, Ray PE (2001) Up-regulation of a fibroblast growth factor binding protein in children with renal disease. Kidney Int 59:1717–1728PubMedCrossRefGoogle Scholar
  67. 67.
    Ray PE, Tassi E, Liu XH, Wellstein A (2006) Role of fibroblast growth factor-binding protein in the pathogenesis of HIV-associated hemolytic uremic syndrome. Am J Physiol Regul Integr Comp Physiol 290:R105–R113PubMedGoogle Scholar
  68. 68.
    Ascheri G, Sgadari C, Bugarini R, Bogner J, Schatz O, Ensoli B, Sturzl M (2001) Serum concentration of fibroblast growth factor 2 are increased in HIV-1 type-infected patients and inversely correlated to survival probability. AIDS Res Hum Retroviruses 17:1035–1039CrossRefGoogle Scholar
  69. 69.
    Villanueva S, Cespedes C, Gonzalez A, Vio CP (2006) bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. Am J Physiol Regul Integr Comp Physiol 291:R1677–R1687PubMedGoogle Scholar
  70. 70.
    Li Z, Jerebtsova M, Liu X-H, Tang P, Ray PE (2006) Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys. Am J Physiol Renal Physiol 291:F289–F296PubMedCrossRefGoogle Scholar
  71. 71.
    Kriz W, Hahnel B, Rosener S, Elger M (1995) Long term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int 48:1435–1450PubMedCrossRefGoogle Scholar
  72. 72.
    Roderiquez G, Oravecz T, Yanagishita M, Bou-Habbi DC, Mostowski H, Norcross MA (1995) Mediation of human immunodeficiency virus-type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120-gp41. J Virol 69:2233–2239PubMedGoogle Scholar
  73. 73.
    Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallgher J, Werb Z, Rosen SD (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2PubMedCrossRefGoogle Scholar
  74. 74.
    Burns JM, Lewis GK, DeVico AL (1999) Soluble complexes of regulated upon activation, normal T cells expressed and secreted (RANTES) and glycosaminoglycans suppress HIV-1 infection but do no induce Ca2+ signaling. Proc Natl Acad Sci USA 96:14499–14504PubMedCrossRefGoogle Scholar
  75. 75.
    Rusnati M, Urbinati C, Caputo A, Possati L, Lortat-Jacob H, Giacca M, Ribatti D, Presta M (2001) Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J Biol Chem 276:22420–22425PubMedCrossRefGoogle Scholar
  76. 76.
    Chaparro AI, Mitchell CD, Abitbol CL, Wilkinson JD, Baldarragi G, Lopez E, Zilleruelo G (2008) Proteinuria in children infected with the Human Immunodeficiency Virus. J Pediatr 152:844–849PubMedCrossRefGoogle Scholar
  77. 77.
    Wyatt CM, Klotman PE (2006) Antiretrovial therapy and the kidney: balancing benefit and risk in patients with HIV infection. Expert Opin Drug Saf 5:275–287PubMedCrossRefGoogle Scholar
  78. 78.
    Sgadari C, Moninin P, Barillari G, Ensoli B (2000) Use of HIV-1 protease inhibitors to block Kaposi’s sarcoma and tumor growth. Lancet 4:537–547Google Scholar
  79. 79.
    Sothinathan R, Briggs WA, Eustace JA (2001) Treatment of HIV-associated nephropathy. AIDS Patient Care STDS 15:363–371PubMedCrossRefGoogle Scholar
  80. 80.
    Wei A, Burns GC, Williams BA, Mohammed NB, Sivak SL (2003) Long term renal survival in HIV-associated nephropathy with angiotensin-converting enzyme inhibition. Kidney Int 64:1462–1471PubMedCrossRefGoogle Scholar
  81. 81.
    Bird JE, Durham SK, Giancarli MR, Gitlitz PH, Pandya DG, Dambach DM, Mozes MM, Kopp JB (1998) Captopril prevents nephropathy in HIV-transgenic mice. J Am Soc Nephrol 9:1441–1447PubMedGoogle Scholar

Copyright information

© IPNA 2009

Authors and Affiliations

  1. 1.Division of Nephrology and Center for Molecular Physiology, Children’s Research InstituteChildren’s National Medical CenterWashingtonUSA
  2. 2.Department of PediatricsThe George Washington UniversityWashingtonUSA

Personalised recommendations