Pediatric Nephrology

, 24:67 | Cite as

Human renal function maturation: a quantitative description using weight and postmenstrual age

  • Malin M. Rhodin
  • Brian J. Anderson
  • A. Michael Peters
  • Malcolm G. Coulthard
  • Barry Wilkins
  • Michael Cole
  • Etienne Chatelut
  • Anders Grubb
  • Gareth J. Veal
  • Michael J. Keir
  • Nick H. G. Holford
Original Article

Abstract

This study pools published data to describe the increase in glomerular filtration rate (GFR) from very premature neonates to young adults. The data comprises measured GFR (using polyfructose, 51Cr-EDTA, mannitol or iohexol) from eight studies (n = 923) and involved very premature neonates (22 weeks postmenstrual age) to adulthood (31 years). A nonlinear mixed effects approach (NONMEM) was used to examine the influences of size and maturation on renal function. Size was the primary covariate, and GFR was standardized for a body weight of 70 kg using an allometric power model. Postmenstrual age (PMA) was a better descriptor of maturational changes than postnatal age (PNA). A sigmoid hyperbolic model described the nonlinear relationship between GFR maturation and PMA. Assuming an allometric coefficient of 3/4, the fully mature (adult) GFR is predicted to be 121.2 mL/min per 70 kg [95% confidence interval (CI) 117–125]. Half of the adult value is reached at 47.7 post-menstrual weeks (95%CI 45.1–50.5), with a Hill coefficient of 3.40 (95%CI 3.03–3.80). At 1-year postnatal age, the GFR is predicted to be 90% of the adult GFR. Glomerular filtration rate can be predicted with a consistent relationship from early prematurity to adulthood. We propose that this offers a clinically useful definition of renal function in children and young adults that is independent of the predictable changes associated with age and size.

Keywords

Allometry Fat-free mass Body composition Glomerular filtration rate Lean body weight Postmenstrual age Renal function 

Abbreviations

BMI

Body mass index

BSA

Body surface area

δ

Asymmetry parameter for the sigmoid hyperbolic model

Ffat

Fraction of fat mass

FFM

Fat-free mass

GFR

Glomerular filtration rate

Hill

An exponent describing the steepness of the sigmoid hyperbolic model (taken from the equation describing the oxygen dissociation curve originally described by Hill in 1910)

NFM

Normal fat mass

NONMEM

Computer software for nonlinear mixed effects modelling

PMA

Postmenstrual age

PNA

Postnatal age

PWR

Power exponent

TM50

The maturation half time, i.e. the time to reach 50% of mature function

VPC

Visual predictive check

Notes

Financial Support:

Support was provided solely from institutional and/or departmental sources.

Ethical approval

Ethical approval was not required.

References

  1. 1.
    Chen N, Aleksa K, Woodland C, Rieder M, Koren G (2006) Ontogeny of drug elimination by the human kidney. Pediatr Nephrol 21:160–168PubMedCrossRefGoogle Scholar
  2. 2.
    Sonntag J, Prankel B, Waltz S (1996) Serum creatinine concentration, urinary creatinine excretion and creatinine clearance during the first 9 weeks in preterm infants with a birth weight below 1500 g. Eur J Pediatr 155:815–819PubMedCrossRefGoogle Scholar
  3. 3.
    Guignard JP, Drukker A (1999) Why do newborn infants have a high plasma creatinine? Pediatrics 103:e49PubMedCrossRefGoogle Scholar
  4. 4.
    Rubin MI, Bruck E, Rapoport M, Snively M, McKay H, Baumler A (1949) Maturation of renal function in childhood: clearance studies. J Clin Invest 28:1144–1162CrossRefGoogle Scholar
  5. 5.
    Wilkins BH (1992) Renal function in sick very low birthweight infants: 1. Glomerular filtration rate. Arch Dis Child 67:1140–1145PubMedCrossRefGoogle Scholar
  6. 6.
    Swinkels DW, Hendriks JC, Nauta J, de Jong MC (2000) Glomerular filtration rate by single-injection inulin clearance: definition of a workable protocol for children. Ann Clin Biochem 37:60–66PubMedCrossRefGoogle Scholar
  7. 7.
    Cole M, Price L, Parry A, Keir MJ, Pearson AD, Boddy AV, Veal GJ (2004) Estimation of glomerular filtration rate in paediatric cancer patients using 51CR-EDTA population pharmacokinetics. Br J Cancer 90:60–64PubMedCrossRefGoogle Scholar
  8. 8.
    Bird NJ, Henderson BL, Lui D, Ballinger JR, Peters AM (2003) Indexing glomerular filtration rate to suit children. J Nucl Med 44:1037–1043PubMedGoogle Scholar
  9. 9.
    Coulthard MG (1985) Maturation of glomerular filtration in preterm and mature babies. Early Hum Dev 11:281–292PubMedCrossRefGoogle Scholar
  10. 10.
    Coulthard MG, Hey EN, Ruddock V (1985) Creatinine and urea clearances compared to inulin clearance in preterm and mature babies. Early Hum Dev 11:11–19PubMedCrossRefGoogle Scholar
  11. 11.
    Bouvet Y, Bouissou F, Coulais Y, Seronie-Vivien S, Tafani M, Decramer S, Chatelut E (2006) GFR is better estimated by considering both serum cystatin C and creatinine levels. Pediatr Nephrol 21:1299–1306PubMedCrossRefGoogle Scholar
  12. 12.
    Grubb A, Nyman U, Bjork J, Lindstrom V, Rippe B, Sterner G, Christensson A (2005) Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem 51:1420–1431PubMedCrossRefGoogle Scholar
  13. 13.
    Beal SL, Sheiner LB, Boeckmann A (1999) NONMEM user’s guide. Division of Pharmacology, University of California, San FranciscoGoogle Scholar
  14. 14.
    Peters HP (1983) Chapter 4. Physiological correlates of size. In: Beck E, Birks HJB, Conner EF (eds) The Ecological Implications of Body Size. Cambridge University Press, Cambridge, pp 48–53Google Scholar
  15. 15.
    Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44:1051–1065PubMedCrossRefGoogle Scholar
  16. 16.
    Duffull SB, Dooley MJ, Green B, Poole SG, Kirkpatrick CM (2004) A standard weight descriptor for dose adjustment in the obese patient. Clin Pharmacokinet 43:1167–1178PubMedCrossRefGoogle Scholar
  17. 17.
    Boyd E (1935) The growth of the surface area of the human body. University of Minnesota Press, MinneapolisGoogle Scholar
  18. 18.
    Sharkey I, Boddy AV, Wallace H, Mycroft J, Hollis R, Picton S (2001) Body surface area estimation in children using weight alone: application in paediatric oncology. Br J Cancer 85:23–28PubMedCrossRefGoogle Scholar
  19. 19.
    Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 14:4–7Google Scholar
  20. 20.
    Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332PubMedCrossRefGoogle Scholar
  21. 21.
    Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH (2007) Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol 63:75–84PubMedCrossRefGoogle Scholar
  22. 22.
    Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300CrossRefGoogle Scholar
  23. 23.
    Wahlby U, Jonsson EN, Karlsson MO (2001) Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn 28:231–252PubMedCrossRefGoogle Scholar
  24. 24.
    Wahlby U, Bouw MR, Jonsson EN, Karlsson MO (2002) Assessment of type I error rates for the statistical sub-model in NONMEM. J Pharmacokinet Pharmacodyn 29:251–269PubMedCrossRefGoogle Scholar
  25. 25.
    Parke J, Holford NH, Charles BG (1999) A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed 59:19–29PubMedCrossRefGoogle Scholar
  26. 26.
    Al-Dahhan J, Haycock GB, Chantler C, Stimmler L (1983) Sodium homeostasis in term and preterm neonates. I. Renal aspects. Arch Dis Child 58:335–342PubMedCrossRefGoogle Scholar
  27. 27.
    James A, Koren G, Milliken J, Soldin S, Prober C (1987) Vancomycin pharmacokinetics and dose recommendations for preterm infants. Antimicrob Agents Chemother 31:52–54PubMedGoogle Scholar
  28. 28.
    van der Heijden AJ, Grose WF, Ambagtsheer JJ, Provoost AP, Wolff ED, Sauer PJ (1988) Glomerular filtration rate in the preterm infant: the relation to gestational and postnatal age. Eur J Pediatr 148:24–28PubMedCrossRefGoogle Scholar
  29. 29.
    Aperia A, Broberger O, Elinder G, Herin P, Zetterstrom R (1981) Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand 70:183–187PubMedCrossRefGoogle Scholar
  30. 30.
    Cuzzolin L, Fanos V, Pinna B, di Marzio M, Perin M, Tramontozzi P, Tonetto P, Cataldi L (2006) Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions. Pediatr Nephrol 21:931–938PubMedCrossRefGoogle Scholar
  31. 31.
    Holford NHG (1996) A size standard for pharmacokinetics. Clin Pharmacokinet 30:329–332PubMedGoogle Scholar
  32. 32.
    West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592PubMedCrossRefGoogle Scholar
  33. 33.
    van den Anker JN, de Groot R, Broerse HM, Sauer PJ, van der Heijden BJ, Hop WC, Lindemans J (1995) Assessment of glomerular filtration rate in preterm infants by serum creatinine: comparison with inulin clearance. Pediatrics 96:1156–1158PubMedGoogle Scholar
  34. 34.
    Coulthard MG, Hey EN (1984) Weight as the best standard for glomerular filtration in the newborn. Arch Dis Child 59:373–375PubMedCrossRefGoogle Scholar
  35. 35.
    Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA (2008) Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation 117:2279–2287PubMedCrossRefGoogle Scholar
  36. 36.
    Hayton WL (2000) Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci 2:E3PubMedGoogle Scholar
  37. 37.
    Calder WA, Braun EJ (1983) Scaling of osmotic regulation in mammals and birds. Am J Physiol 244:R601–R606PubMedGoogle Scholar
  38. 38.
    Brody S, Proctor RC, Ashworth US (1934) Basal metabolism, endogenous nitrogen, creatinine, and sulphur excretions as functions of body weight. Univ Mo Agric Exp Sta Res Bull 220:1–40Google Scholar
  39. 39.
    Singer MA, Morton AR (2000) Mouse to elephant: biological scaling and Kt/V. Am J Kidney Dis 35:306–309PubMedCrossRefGoogle Scholar
  40. 40.
    Singer MA (2001) Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am J Kidney Dis 37:164–178PubMedCrossRefGoogle Scholar
  41. 41.
    Edwards NA (1975) Scaling of renal functions in mammals. Comp Biochem Physiol A 52:63–66PubMedCrossRefGoogle Scholar
  42. 42.
    Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH (2004) The predominance of quarter-power scaling in biology. Funct Ecol 18:257–282CrossRefGoogle Scholar
  43. 43.
    Poole SG, Dooley MJ, Rischin D (2002) A comparison of bedside renal function estimates and measured glomerular filtration rate (Tc99mDTPA clearance) in cancer patients. Ann Oncol 13:949–955PubMedCrossRefGoogle Scholar
  44. 44.
    Dooley MJ, Poole SG (2000) Poor correlation between body surface area and glomerular filtration rate. Cancer Chemother Pharmacol 46:523–526PubMedCrossRefGoogle Scholar
  45. 45.
    Peters AM, Gordon I, Sixt R (1994) Normalization of glomerular filtration rate in children: body surface area, body weight or extracellular fluid volume? J Nucl Med 35:438–444PubMedGoogle Scholar
  46. 46.
    Leger F, Bouissou F, Coulais Y, Tafani M, Chatelut E (2002) Estimation of glomerular filtration rate in children. Pediatr Nephrol 17:903–907PubMedCrossRefGoogle Scholar
  47. 47.
    Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function–measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483PubMedCrossRefGoogle Scholar
  48. 48.
    Engle WA (2004) Age terminology during the perinatal period. Pediatrics 114:1362–1364PubMedCrossRefGoogle Scholar
  49. 49.
    Tod M, Lokiec F, Bidault R, De Bony F, Petitjean O, Aujard Y (2001) Pharmacokinetics of oral acyclovir in neonates and in infants: a population analysis. Antimicrob Agents Chemother 45:150–157PubMedCrossRefGoogle Scholar
  50. 50.
    Arant BS Jr (1978) Developmental patterns of renal functional maturation compared in the human neonate. J Pediatr 92:705–712PubMedCrossRefGoogle Scholar
  51. 51.
    Schwartz JB (2003) The influence of sex on pharmacokinetics. Clin Pharmacokinet 42:107–121PubMedCrossRefGoogle Scholar
  52. 52.
    Matthews I, Kirkpatrick C, Holford N (2004) Quantitative justification for target concentration intervention–parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol 58:8–19PubMedCrossRefGoogle Scholar
  53. 53.
    Martini S, Prevot A, Mosig D, Werner D, van Melle G, Guignard JP (2003) Glomerular filtration rate: measure creatinine and height rather than cystatin C! Acta Paediatr 92:1052–1057PubMedCrossRefGoogle Scholar
  54. 54.
    Heilbron DC, Holliday MA, al-Dahwi A, Kogan BA (1991) Expressing glomerular filtration rate in children. Pediatr Nephrol 5:5–11PubMedCrossRefGoogle Scholar
  55. 55.
    Han PY, Duffull SB, Kirkpatrick CM, Green B (2007) Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther 82:505–508PubMedCrossRefGoogle Scholar
  56. 56.
    Du Bois D, Du Bois EF (1916) Clinical calorimetry: tenth paper. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871Google Scholar

Copyright information

© IPNA 2008

Authors and Affiliations

  • Malin M. Rhodin
    • 1
  • Brian J. Anderson
    • 2
    • 11
  • A. Michael Peters
    • 3
  • Malcolm G. Coulthard
    • 4
  • Barry Wilkins
    • 5
  • Michael Cole
    • 6
  • Etienne Chatelut
    • 7
  • Anders Grubb
    • 8
  • Gareth J. Veal
    • 6
  • Michael J. Keir
    • 9
  • Nick H. G. Holford
    • 10
  1. 1.Department of Pharmaceutical Biosciences, Division of Pharmacokinetics and Drug Therapy, Faculty of Pharmacy Uppsala UniversityUppsalaSweden
  2. 2.Department of AnesthesiologyUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Applied PhysiologyBrighton and Sussex University Hospitals NHS TrustBrightonUK
  4. 4.Paediatric NephrologyRoyal Victoria InfirmaryNewcastleUK
  5. 5.Paediatric Intensive Care UnitThe Children’s Hospital at WestmeadWestmeadAustralia
  6. 6.Northern Institute for Cancer ResearchUniversity of NewcastleNewcastle upon TyneUK
  7. 7.EA3035 Université Paul-Sabatier and Institut Claudius-RegaudToulouseFrance
  8. 8.Department of Clinical ChemistryUniversity HospitalLundSweden
  9. 9.Department of Medical PhysicsMedical School, University of NewcastleNewcastle upon TyneUK
  10. 10.Department of Pharmacology and Clinical PharmacologyUniversity of AucklandAucklandNew Zealand
  11. 11.C/-PICUAuckland Children’s HospitalAucklandNew Zealand

Personalised recommendations