Pediatric Nephrology

, Volume 24, Issue 2, pp 367–377 | Cite as

Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system

  • Siddhartha S. Ghosh
  • Richard J. Krieg
  • Domenic A. Sica
  • Ruipeng Wang
  • Itaf Fakhry
  • Todd Gehr
Original Article


Cardiac hypertrophy is frequently encountered in patients with renal failure and represents an independent risk factor for cardiovascular morbidity and mortality. The pathogenesis of cardiac hypertrophy is related to multiple factors, including excess adrenergic activity. This study investigated how renal injury in the early stages of life affects the adrenergic system and thereby potentially influences cardiac growth. Biomarkers of cardiac hypertrophy were used to assess adrenergic function. Newborn male Sprague-Dawley rats were allocated to three groups of five rats each: 5/6 nephrectomy (Nx), pair-fed controls (PF), and sham-operated (SH). Nx animals had significantly higher plasma urea nitrogen, serum creatinine, and mean arterial blood pressure. The heart-weight/body-weight ratio of the Nx cohort was higher than SH and PF (p < 0.001) groups. Plasma norepinephrine (NE) of Nx animals was almost twofold higher than SH and PF (p < 0.01) animals. Compared with SH and PF, Nx animals had higher α1A-receptor protein expression, lower cardiac β1- and β2-receptor protein expression (p < 0.05), but higher G-protein-coupled receptor kinase-2 (GRK2) expression (p < 0.05). Norepinephrine transporter protein (NET) and renalase protein expression in cardiac tissue from Nx pups were significantly lower than SH and PF. Our data suggest that early age Nx animals have increased circulating catecholamines due to decreased NE metabolism. Enhancement of cardiac GRK2 and NE can contribute to cardiac hypertrophy seen in Nx animals. Furthermore, AKT (activated via α1A receptors), as well as increased α1A receptors and their agonist NE, might contribute to the observed hypertrophy.


Remnant kidney Renalase Signaling 



This work is supported by the Jeffress Foundation.


  1. 1.
    O’Regan S (1984) Cardiovascular abnormalities in paediatric patients with ESRD. In: Fine RN, Gruskin AB (eds) End-stage renal disease in children. Saunders, Philadelphia, pp 359–374Google Scholar
  2. 2.
    Scharer K, Ulmer HE (1985) Cardiovascular complications of renal failure. In: Holliday MA, Barratit TM, Vernier RL (eds) Pediatric nephrology (2nd edn). Williams and Wilkins, Baltimore, pp 887–896Google Scholar
  3. 3.
    Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2006) Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr 2149:671–675Google Scholar
  4. 4.
    Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fatuzzo P, Seminara G, Cataliotti A, Stancanelli B, Malatino LS (2002) Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 105:1354–1359PubMedCrossRefGoogle Scholar
  5. 5.
    Leineweber K, Heinroth-Hoffmann I, Pönicke K, Abraham G, Osten B, Brodde OE (2002) Cardiac beta-adrenoceptor desensitization due to increased beta-adrenoceptor kinase activity in chronic uremia. J Am Soc Nephrol 13:117–124PubMedGoogle Scholar
  6. 6.
    Mann JF, Jakobs KH, Riedel J, Ritz E (1986) Reduced chronotropic responsiveness of the heart in experimental uremia. Am J Physiol 250:H846–H852PubMedGoogle Scholar
  7. 7.
    Meggs LG, Ben-Ari J, Gammon D, Choudhury M, Goodman AI (1986) Effect of chronic uremia on the cardiovascular alpha 1 receptor. Life Sci 39:169–179PubMedCrossRefGoogle Scholar
  8. 8.
    Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63:9–18PubMedCrossRefGoogle Scholar
  9. 9.
    Slotkin TA, Saleh JL, Zhang J, Seidler FJ (1996) Ontogeny of adrenoceptor/adenylyl cyclase desensitization mechanisms: the role of neonatal innervation. Brain Res 742:317–328PubMedCrossRefGoogle Scholar
  10. 10.
    Garofolo MC, Seidler FJ, Auman JT, Slotkin TA (2002) Adrenergic modulation of muscarinic cholinergic receptor expression and function in the developing heart. Am J Physiol 282:R1356–R1363Google Scholar
  11. 11.
    Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiomyocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28:1737–1746PubMedCrossRefGoogle Scholar
  12. 12.
    Slotkin TA, Smith PG, Lau C, Bareis DL (1980) Functional aspects of development of catecholamine biosynthesis and release in the sympathetic nervous system. In: Parvez H, Parvez S (eds) Biogenic amines in development. Elsevier/North-Holland, Amsterdam, pp 29–48Google Scholar
  13. 13.
    Deskin R, Mills E, Whitmore WL, Seidler FJ, Slotkin TA (1980) Maturation of sympathetic neurotransmission in the rat heart. VI. The effect of neonatal central catecholaminergic lesions. J Pharmacol Exp Ther 215:342–347PubMedGoogle Scholar
  14. 14.
    Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757PubMedCrossRefGoogle Scholar
  15. 15.
    Iaccarino G, Dolber PC, Lefkowitz RJ, Koch WJ (1999) Beta-adrenergic receptor kinase-1 levels in catecholamine-induced myocardial hypertrophy: regulation by beta- but not alpha1-adrenergic stimulation. Hypertension 33:396–401PubMedGoogle Scholar
  16. 16.
    Dhein S, Röhnert P, Markau S, Kotchi-Kotchi E, Becker K, Poller U, Osten B, Brodde OE (2000) Cardiac beta-adrenoceptors in chronic uremia: studies in humans and rats. J Am Coll Cardiol 36:608–617PubMedCrossRefGoogle Scholar
  17. 17.
    Briest W, Rassler B, Deten A, Zimmer HG (2003) Norepinephrine-induced cardiac hypertrophy and fibrosis are not due to mast cell degranulation. Mol Cell Biochem 252:229–237PubMedCrossRefGoogle Scholar
  18. 18.
    Shannon JR, Flattem NL, Jordan J, Jacob G, Black BK, Biaggioni I, Blakely RD, Robertson D (2000) Orthostatic intolerance and tachycardia associated with norepinephrine-transporter deficiency. N Engl J Med 342:541–549PubMedCrossRefGoogle Scholar
  19. 19.
    Perrino C, Rockman HA (2007) Reversal of cardiac remodeling by modulation of adrenergic receptors: a new frontier in heart failure. Curr Opin Cardiol 22:443–449PubMedCrossRefGoogle Scholar
  20. 20.
    Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906PubMedCrossRefGoogle Scholar
  21. 21.
    Osadchii OE (2007) Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 12:66–86PubMedCrossRefGoogle Scholar
  22. 22.
    Penela P, Murga C, Ribas C, Tutor AS, Peregrín S, Mayor F (2006) Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 69:46–56PubMedCrossRefGoogle Scholar
  23. 23.
    Choi DJ, Koch WJ, Hunter JJ, Rockman HA (1997) Mechanism of b-adrenergic receptor desensitization in cardiac hypertrophy is increased b-adrenergic receptor kinase. J Biol Chem 272:17223–17229PubMedCrossRefGoogle Scholar
  24. 24.
    Leineweber K, Rohe P, Beilfuss A, Wolf C, Sporkmann H, Bruck H, Jakob HG, Heusch G, Philipp T, Brodde OE (2005) G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade. Cardiovasc Res 66:512–519PubMedCrossRefGoogle Scholar
  25. 25.
    McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S (2003) Phosphoinositide 3-kinase(p110a) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 100:12355–12360PubMedCrossRefGoogle Scholar
  26. 26.
    Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29:609–617PubMedCrossRefGoogle Scholar
  27. 27.
    Krieg RJ, Chan W, Lin KC, Kuemmerle NB, Veldhuis JD, Chan JC (2002) Growth hormone and growth hormone-related mRNA in uremic rats: effect of a growth hormone secretagogue. Pediatr Nephrol 17:585–590PubMedCrossRefGoogle Scholar
  28. 28.
    Rocha-Singh KJ, Honbo NY, Karliner JS (1991) Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes. J Clin Invest 88:204–213PubMedCrossRefGoogle Scholar
  29. 29.
    Ghosh SS, Gehr TW, Ghosh S, Fakhry I, Sica DA, Lyall V, Schoolwerth AC (2003) PPARgamma ligand attenuates PDGF-induced mesangial cell proliferation: role of MAP kinase. Kidney Int 64:52–62PubMedCrossRefGoogle Scholar
  30. 30.
    Ghosh S, Sica D, Schoolwerth AC, Quigg RJ, Haas M, Fakhry I, Gehr TW (2002) The role of the renin-angiotensin system in cholesterol and puromycin mediated renal injury. Am J Med Sci 324:296–304PubMedCrossRefGoogle Scholar
  31. 31.
    Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest 115:1275–1280PubMedGoogle Scholar
  32. 32.
    Yamaguchi N, Takahashi N, Xu L, Smithies O, Meissner G (2007) Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca release channel. J Clin Invest 117:1344–1353PubMedCrossRefGoogle Scholar
  33. 33.
    Callanan EY, Lee EW, Tilan JU, Winaver J, Haramati A, Mulroney SE, Zukowska Z (2007) Renal and Cardiac Neuropeptide Y (NPY) and NPY Receptors in a Rat Model of Congestive Heart Failure. Am J Physiol Renal Physiol 293:1811–1817CrossRefGoogle Scholar
  34. 34.
    Strand AH, Gudmundsdottir H, Os I, Smith G, Westheim AS, Bjørnerheim R, Kjeldsen SE (2006) Arterial plasma noradrenaline predicts left ventricular mass independently of blood pressure and body build in men who develop hypertension over 20 years. J Hypertens 24:905–913PubMedCrossRefGoogle Scholar
  35. 35.
    Rascher W, Schömig A, Kreye VA, Ritz E (1982) Diminished vascular response to noradrenaline in experimental chronic uremia. Kidney Int 1:20–27CrossRefGoogle Scholar
  36. 36.
    Amann K, Rump LC, Simonaviciene A, Oberhauser V, Wessels S, Orth SR, Gross ML, Koch A, Bielenberg GW, Van Kats JP, Ehmke H, Mall G, Ritz E (2000) Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats. J Am Soc Nephrol 11:1469–1478PubMedGoogle Scholar
  37. 37.
    Goldstein DS (1988) Plasma catecholamines and essential hypertension: An analytical review. Hypertension 5:86–99Google Scholar
  38. 38.
    Esler M, Kaye D (2000) Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics. Heart Fail Rev 5:17–25PubMedCrossRefGoogle Scholar
  39. 39.
    Woodcock EA (2007) Roles of a1a- and a1b-adrenoceptors in heart: insights from studies of genetically modified mice. Clin Exp Pharmacol Physiol 34:884–888PubMedCrossRefGoogle Scholar
  40. 40.
    Anderson D, Campbell AM, Feldman M, White R, Roden W, Minobe MF, Khan P, Larrabee M, Wollmering JD, Port F (1994) Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 90:1225–1238PubMedGoogle Scholar
  41. 41.
    Bazan A, Van de Velde E, Fraeyman N (1994) Effect of age on beta-receptors, Gs alpha- and Gi alpha- proteins in rat heart. Biochem Pharmacol 48:479–486PubMedCrossRefGoogle Scholar
  42. 42.
    Tyralla K, Amann K (2003) Morphology of the heart and arteries in renal failure. Kidney Int 84:S80–S83CrossRefGoogle Scholar
  43. 43.
    Ferchland A, Rettkowski O, Pönicke K, Deuber HJ, Osten B, Brodde OE (1998) Effects of uremic plasma on alpha- and beta-adrenoceptor subtypes. Nephron 80:46–50PubMedCrossRefGoogle Scholar
  44. 44.
    Koch WJ (2004) Genetic and phenotypic targeting of beta-adrenergic signaling in heart failure. Mol Cell Biochem. 263:5–9PubMedCrossRefGoogle Scholar
  45. 45.
    Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100:323–337PubMedCrossRefGoogle Scholar
  46. 46.
    Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212PubMedCrossRefGoogle Scholar
  47. 47.
    Eckhart AD, Ozaki T, Tevaearai H, Rockman HA, Koch WJ (2002) Vascular-targeted overexpression of G protein-coupled receptor kinase-2 in transgenic mice attenuates beta-adrenergic receptor signaling and increases resting blood pressure. Mol Pharmacol 61:749–758PubMedCrossRefGoogle Scholar
  48. 48.
    Kimball KA, Cornett LE, Seifen E, Kennedy RH (1991) Aging changes in cardiac alpha 1-adrenoceptor responsiveness and expression. Eur J Pharmacol 208:231–238PubMedCrossRefGoogle Scholar
  49. 49.
    Chalothorn D, McCune DF, Edelmann SE, García-Cazarín ML, Tsujimoto G, Piascik MT (2002) Differences in the cellular localization and agonist-mediated internalization properties of the alpha(1)-adrenoceptor subtypes. Mol Pharmacol 61:1008–1016PubMedCrossRefGoogle Scholar
  50. 50.
    Fonseca MI, Button DC, Brown RD (1995) Agonist regulation of _1B-adrenergic receptor subcellular distribution and function. J Biol Chem 270:8902–8909PubMedCrossRefGoogle Scholar
  51. 51.
    Wang J, Zheng J, Anderson JL, Toews ML (1997) A mutation in the hamster a1B-adrenergic receptor that differentiates two steps in the pathway of receptor internalization. Mol Pharmacol 52:306–313PubMedGoogle Scholar
  52. 52.
    Mahan LC, McKernan RM, Insel PA (1987) Metabolism of alpha- and beta-adrenergic receptors in vitro and in vivo. Annu Rev Pharmacol Toxicol 27:215–235PubMedGoogle Scholar
  53. 53.
    Akhter SA, Milano CA, Shotwell KF, Cho MC, Rockman HA, Lefkowitz RJ, Koch WJ (1997) Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. J Biol Chem 272:21253–21259PubMedCrossRefGoogle Scholar
  54. 54.
    Augustyniak RA, Tuncel M, Zhang W, Toto RD, Victor RG (2002) Sympathetic overactivity as a cause of hypertension in chronic renal failure. J Hypertens. 20:3–9PubMedCrossRefGoogle Scholar
  55. 55.
    Proud CG (2004) Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res 63:403–413PubMedCrossRefGoogle Scholar
  56. 56.
    Xiao L, Pimental DR, Amin JK, Singh KSDB, Sawyer DB, Colucci WS (2001) MEK1/2–ERK1/2 mediates a1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33:779–787PubMedCrossRefGoogle Scholar
  57. 57.
    Kodama H, Fukuda K, Pan J, Sano M, Takahashi T, Kato T, Makino S, Manabe T, Murata M, Ogawa S (2000) Significance of ERK cascade compared with JAK/STAT and PI3-K pathway in gp130-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol 279:H1635–H1644PubMedGoogle Scholar
  58. 58.
    Thorburn J, Frost JA, Thorburn A (1994) Mitogen-activated protein kinases mediate changes in gene expression but not cytoskeletal organisation associated with cardiac muscle hypertrophy. J Cell Biol 126:1565–1572PubMedCrossRefGoogle Scholar
  59. 59.
    Silberbach M, Gorenc T, Hershberger RE, Stork PJ, Steyger PS, Roberts CT (1999) Extracellular signal-regulated protein kinase activation is required for the anti-hypertrophic effect of atrial natriuretic factor in neonatal rat ventricular myocytes. J Biol Chem 274:24858–24864PubMedCrossRefGoogle Scholar
  60. 60.
    Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C (2002) Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 99:12333–12338PubMedCrossRefGoogle Scholar
  61. 61.
    Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901PubMedCrossRefGoogle Scholar
  62. 62.
    Guo J, Sabri A, Elouardighi H, Rybin V, Steinberg SF (2006) Alpha1-adrenergic receptors activate AKT via a Pyk2/PDK-1 pathway that is tonically inhibited by novel protein kinase C isoforms in cardiomyocytes. Circ Res 99:1367–1375PubMedCrossRefGoogle Scholar
  63. 63.
    O’Connell TD, Swigart PM, Rodrigo MC, Ishizaka S, Joho S, Turnbull L, Tecott LH, Baker AJ, Foster E, Grossman W, Simpson PC (2006) Alpha1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest 116:1005–1015PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2008

Authors and Affiliations

  • Siddhartha S. Ghosh
    • 1
    • 2
  • Richard J. Krieg
    • 1
  • Domenic A. Sica
    • 1
  • Ruipeng Wang
    • 1
  • Itaf Fakhry
    • 1
  • Todd Gehr
    • 1
  1. 1.Division of Nephrology, VCU Medical CenterVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Internal Medicine/NephrologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations