Skip to main content
Log in

In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Chloroacetaldehyde (CAA) is the putative metabolite responsible for ifosfamide-induced nephrotoxicity. Whereas evidence suggests that sodium 2-mercaptoethanesulfonate (mesna) and amifostine protect renal cells against CAA toxicity in vitro, their efficacy in clinical studies is controversial. To better understand the discrepancy between in vivo and in vitro results, we combined the in vivo intraperitoneal administration of either saline or mesna (100 mg/kg) or amifostine (200 mg/kg) in rats and the in vitro study of CAA toxicity to both proximal tubules and precision-cut renal cortical slices. The measured renal cortical concentrations of mesna and amifostine were 0.6±0.1 μmol/g and 1.2±0.2 μmol/g, respectively; these drugs did not cause renal toxicity. Despite this, none of the adverse effects of 0.5 mM CAA was prevented by the previous in vivo administration of mesna or amifostine. Toxicity of 0.5 mM CAA to rat proximal tubules was shown by the fall of cellular adenosine triphosphate (ATP), total glutathione and coenzyme A + acetyl-coenzyme A levels and by the altered metabolic viability of renal cells. Long-term exposure of cortical slices to CAA concentrations ≥30 μM caused severe cell toxicity (i.e. decrease in cellular ATP, total glutathione, and coenzyme A + acetyl-coenzyme A levels), which was not prevented by the in vivo administration of mesna or amifostine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carli M, Passone E, Perilongo G, Bisogno G (2003) Ifosfamide in pediatric solid tumors. Oncology 65(Suppl 2):99–104

    CAS  PubMed  Google Scholar 

  2. Jurgens H, Treuner J, Winkler K, Gobel U (1989) Ifosfamide in pediatric malignancies. Semin Oncol 16:46–50

    CAS  PubMed  Google Scholar 

  3. Kaijser GP, Beijnen JH, Bult A, Underberg WJ (1994) Ifosfamide metabolism and pharmacokinetics (review). Anticancer Res 14:517–531

    CAS  PubMed  Google Scholar 

  4. Skinner R, Sharkey IM, Pearson AD, Craft AW (1993) Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 11:173–190

    CAS  PubMed  Google Scholar 

  5. Ho PT, Zimmerman K, Wexler LH, Blaney S, Jarosinski P, Weaver-McClure L, Izraeli S, Balis FM (1995) A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer 76:2557–2564

    CAS  PubMed  Google Scholar 

  6. Skinner R, Cotterill SJ, Stevens MC (2000) Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG late effects group study. United Kingdom Children’s Cancer Study Group. Br J Cancer 82:1636–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Capizzi R (1996) Amifostine: the preclinical basis for broad-spectrum selective cytoprotection of normal tissues from cytotoxic therapies. Semin Oncol 23:2–17

    CAS  PubMed  Google Scholar 

  8. Hartmann JT, Knop S, Fels LM, van Vangerow A, Stolte H, Kanz L, Bokemeyer C (2000) The use of reduced doses of amifostine to ameliorate nephrotoxicity of cisplatin/ifosfamide-based chemotherapy in patients with solid tumors. Anticancer Drugs 11:1–6

    CAS  PubMed  Google Scholar 

  9. Rick O, Beyer J, Schwella N, Schubart H, Schleicher J, Siegert W (2001) Assessment of amifostine as protection from chemotherapy-induced toxicities after conventional-dose and high-dose chemotherapy in patients with germ cell tumor. Ann Oncol 12:1151–1155

    CAS  PubMed  Google Scholar 

  10. Petrilli AS, Oliveira DT, Ginani VC, Kechichian R, Dishtchekenian A, Filho Wde M, Tanaka C, Dias CG, Latorre Mdo R, Brunetto AL, Cardoso H, Almeida MT, de Camargo B (2002) Use of amifostine in the therapy of osteosarcoma in children and adolescents. J Pediatr Hematol Oncol 24:188–191

    PubMed  Google Scholar 

  11. de Kraker J, Bierings MB, Offringa M (2000) Lack of protection of proximal tubular cells by amifostine (ethyol) in ifosfamide-containing regimens. Med Pediatr Oncol 34:78–79

    PubMed  Google Scholar 

  12. Dubourg L, Michoudet C, Cochat P, Baverel G (2001) Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol 12:1615–1623

    CAS  PubMed  Google Scholar 

  13. Baverel G, Bonnard M, d’Armagnac de Castanet E, Pellet M (1978) Lactate and pyruvate metabolism in isolated renal tubules of normal dogs. Kidney Int 14:567–575

    CAS  PubMed  Google Scholar 

  14. Vittorelli A, Gauthier C, Michoudet C, Martin G, Baverel G (2005) Characteristics of glutamine metabolism in human precision-cut kidney slices: a 13C-NMR study. Biochem J 387:825–834

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  16. Riddles PW, Blakeley RL, Zerner B (1979) Ellman’s reagent: 5,5′-dithiobis(2-nitrobenzoic acid)-a reexamination. Anal Biochem 94:75–81

    CAS  PubMed  Google Scholar 

  17. Shaw IC, Weeks MS (1987) Excretion of disodium bis-2-mercaptoethanesulphonate (dimesna) in the urine of volunteers after oral dosing. Eur J Cancer Clin Oncol 23:933–935

    CAS  PubMed  Google Scholar 

  18. Lamprecht W, Trautschold I (1974) Adenosine-5′-triphosphate determination with hexokinase and glucose-6-phosphate dehydrogenase methods of enzymatic analysis, Bergmeyer HU edition, vol. 4. New York, Academic Press, pp 2101–2110

    Google Scholar 

  19. Michal G, Bergmeyer HU (1985) Coenzyme A, catalytic method with phosphate acetyltransferase. Methods of enzymatic analysis, Bergmeyer HU edition, vol. VII. Weinheim, VCH Verlagsgesellschaft, pp 169–177

    Google Scholar 

  20. Griffith OW (1985) Glutathione and glutathione disulphide. In: Methods of enzymatic analysis, Bergmeyer HU edition, vol. VIII. Weinheim, VCH Verlagsgesellschaft, pp 521–529

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  22. Ormstad K, Orrenius S, Lastbom T, Uehara N, Pohl J, Stekar J, Brock N (1983) Pharmacokinetics and metabolism of sodium 2-mercaptoethanesulfonate in the rat. Cancer Res 43:333–338

    CAS  PubMed  Google Scholar 

  23. Yuhas JM (1980) Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. Cancer Res 40:1519–1524

    CAS  PubMed  Google Scholar 

  24. Cassatt DR, Fazenbaker CA, Kifle G, Bachy CM (2003) Subcutaneous administration of amifostine (ethyol) is equivalent to intravenous administration in a rat mucositis model. Int J Radiat Oncol Biol Phys 57:794–802

    CAS  PubMed  Google Scholar 

  25. Verschraagen M, Bosma M, Zwiers TH, Torun E, van der Vijgh WJ (2003) Quantification of mesna and total mesna in kidney tissue by high-performance liquid chromatography with electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci 783:33–42

    CAS  PubMed  Google Scholar 

  26. Utley JF, Seaver N, Newton GL, Fahey RC (1984) Pharmacokinetics of WR-1065 in mouse tissue following treatment with WR-2721. Int J Radiat Oncol Biol Phys 10:1525–1528

    CAS  PubMed  Google Scholar 

  27. Shaw LM, Bonner HS, Brown DQ (1994) Metabolic pathways of WR-2721 (ethyol, amifostine) in the BALB/c mouse. Drug Metab Dispos 22:895–902

    CAS  PubMed  Google Scholar 

  28. Ali MS, Roche TE, Patel MS (1993) Identification of the essential cysteine residue in the active site of bovine pyruvate dehydrogenase. J Biol Chem 268:22353–22356

    CAS  PubMed  Google Scholar 

  29. Nissim I, Horyn O, Daikhin Y, Luhovyy B, Phillips PC, Yudkoff M (2006) Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res 66:7824–7831

    CAS  PubMed  Google Scholar 

  30. Zaki EL, Springate JE, Taub M (2003) Comparative toxicity of ifosfamide metabolites and protective effect of mesna and amifostine in cultured renal tubule cells. Toxicol In Vitro 17:397–402

    CAS  PubMed  Google Scholar 

  31. Schwerdt G, Kirchhoff A, Freudinger R, Wollny B, Benesic A, Gekle M (2007) Mesna or cysteine prevents chloroacetaldehyde-induced cell death of human proximal tubule cells. Pediatr Nephrol 22:798–803

    PubMed  Google Scholar 

  32. Springate J, Taub M (2007) Ifosfamide toxicity in cultured proximal renal tubule cells. Pediatr Nephrol 22:358–365

    PubMed  Google Scholar 

  33. Patzer L, Hernando N, Ziegler U, Beck-Schimmer B, Biber J, Murer H (2006) Ifosfamide metabolites CAA, 4-OH-Ifo and Ifo-mustard reduce apical phosphate transport by changing NaPi-IIa in OK cells. Kidney Int 70:1725–1734

    CAS  PubMed  Google Scholar 

  34. Goren MP, Wright RK, Horowitz ME, Pratt CB (1987) Ifosfamide-induced subclinical tubular nephrotoxicity despite mesna. Cancer Treat Rep 71:127–130

    CAS  PubMed  Google Scholar 

  35. James CA, Mant TG, Rogers HJ (1987) Pharmacokinetics of intravenous and oral sodium 2-mercaptoethane sulphonate (mesna) in normal subjects. Br J Clin Pharmacol 23:561–568

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Goren MP, Pratt CB, Meyer WH, Wright RK, Dodge RK, Viar MJ (1989) Mesna excretion and ifosfamide nephrotoxicity in children. Cancer Res 49:7153–7157

    CAS  PubMed  Google Scholar 

  37. Links M, Lewis C (1999) Chemoprotectants: a review of their clinical pharmacology and therapeutic efficacy. Drugs 57:293–308

    CAS  PubMed  Google Scholar 

  38. Uma Devi P, Prasanna PG (1990) Radioprotective effect of combinations of WR-2721 and mercaptopropionylglycine on mouse bone marrow chromosomes. Radiat Res 124:165–170

    CAS  PubMed  Google Scholar 

  39. Pendyala L, Creaven PJ, Schwartz G, Meropol NJ, Bolanowska-Higdon W, Zdanowicz J, Murphy M, Perez R (2000) Intravenous ifosfamide/mesna is associated with depletion of plasma thiols without depletion of leukocyte glutathione. Clin Cancer Res 6:1314–1321

    CAS  PubMed  Google Scholar 

  40. Momerency G, Van Cauwenberghe K, Highley MS, Harper PG, Van Oosterom AT, De Bruijn EA (1996) Partitioning of ifosfamide and its metabolites between red blood cells and plasma. J Pharm Sci 85:262–265

    CAS  PubMed  Google Scholar 

  41. Aleksa K, Ito S, Koren G (2004) Renal-tubule metabolism of ifosfamide to the nephrotoxic chloroacetaldehyde: pharmacokinetic modeling for estimation of intracellular levels. J Lab Clin Med 143:159–162

    CAS  PubMed  Google Scholar 

  42. Springate J, Chan K, Lu H, Davies S, Taub M (1999) Toxicity of ifosfamide and its metabolite chloroacetaldehyde in cultured renal tubule cells. In vitro Cell Dev Biol Anim 35:314–317

    CAS  PubMed  Google Scholar 

  43. Benesic A, Schwerdt G, Freudinger R, Mildenberger S, Groezinger F, Wollny B, Kirchhoff A, Gekle M (2006) Chloroacetaldehyde as a sulfhydryl reagent: The role of critical thiol groups in ifosfamide nephropathy. Kidney Blood Press Res 29:280–293

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Baverel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaseen, Z., Michoudet, C., Baverel, G. et al. In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro. Pediatr Nephrol 23, 611–618 (2008). https://doi.org/10.1007/s00467-007-0689-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0689-6

Keywords

Navigation