Pediatric Nephrology

, 22:2089 | Cite as

NGAL is an early predictive biomarker of contrast-induced nephropathy in children

  • Russel Hirsch
  • Catherine Dent
  • Holly Pfriem
  • Janene Allen
  • Robert H. BeekmanIII
  • Qing Ma
  • Sudha Dastrala
  • Michael Bennett
  • Mark Mitsnefes
  • Prasad Devarajan
Original Article


We hypothesized that neutrophil gelatinase-associated lipocalin (NGAL) is an early predictive biomarker of contrast-induced nephropathy (CIN). We prospectively enrolled 91 children (age 0–18 years) with congenital heart disease undergoing elective cardiac catheterization and angiography with contrast administration (CC; Ioversol). Serial urine and plasma samples were analyzed in a double-blind fashion by NGAL enzyme-linked immunosorbent assay (ELISA). CIN, defined as a 50% increase in serum creatinine from baseline, was found in 11 subjects (12%), but detection using increase in serum creatinine was only possible 6–24 h after CC. In contrast, significant elevation of NGAL concentrations in urine (135 ± 32 vs. 11.6 ± 2 ng/ml without CIN, p < 0.001) and plasma (151 ± 34 vs. 36 ± 4 without CIN, p < 0.001) were noted within 2 h after CC in those subjects. Using a cutoff value of 100 ng/ml, sensitivity, specificity, and area under the receiver-operating characteristic (ROC) curve for prediction of CIN were excellent for the 2-h urine NGAL (73%, 100%, and 0.92, respectively) and 2-h plasma NGAL (73%, 100%, and 0.91, respectively). By multivariate analysis, the 2-h NGAL concentrations in the urine (R 2 = 0.52, p < 0.0001) and plasma (R 2 = 0.72, p < 0.0001) were found to be powerful independent predictors of CIN. Patient demographics and contrast volume were not predictive of CIN.


Acute renal failure Acute kidney injury Biomarkers Lipocalin Contrast agents 



Dr. Devarajan is supported by grants from the NIH/NIDDK (RO1-DK53289, P50-DK52612, R21-DK070163), a Grant-in-Aid from the American Heart Association Ohio Valley Affiliate, and a Translational Research Initiative Grant from Cincinnati Children’s Hospital Medical Center. We are indebted to our patients and their families for their participation.


  1. 1.
    Goldstein SL (2006) Pediatric acute kidney injury: it’s time for real progress. Pediatr Nephrol 21:891–895PubMedCrossRefGoogle Scholar
  2. 2.
    Nguyen MT, Devarajan P (2007) Biomarkers for the early detection of acute kidney injury. Pediatr Nephrol DOI  10.1007/s00467-007-0470-x
  3. 3.
    Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39:930–936PubMedCrossRefGoogle Scholar
  4. 4.
    Pannu N, Wiebe N, Tonelli M (2006) Prophylaxis strategies for contrast-induced nephropathy. JAMA 295:2765–2779PubMedCrossRefGoogle Scholar
  5. 5.
    McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, Tumlin J, CIN Consensus Working Panel (2006) Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol 98(Suppl):5K–13KPubMedCrossRefGoogle Scholar
  6. 6.
    McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, Tumlin J, CIN Consensus Working Panel (2006) Risk prediction of contrast-induced nephropathy. Am J Cardiol 98(Suppl):27K–36KPubMedCrossRefGoogle Scholar
  7. 7.
    Hui-Stickle S, Brewer ED, Goldstein SL (2005) Pediatric ARF epidemiology at a tertiary care center from 1999–2001. Am J Kidney Dis 45:96–101PubMedCrossRefGoogle Scholar
  8. 8.
    Solomon R (2007) Contrast media nephropathy - how to diagnose and how to prevent? Nephrol Dial Transplant 22:1812–1815PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy SW, Barrett BJ, Parfrey PS (2000) Contrast nephropathy. J Am Soc Nephrol 11:177–182PubMedGoogle Scholar
  10. 10.
    Devarajan P (2007) Emerging biomarkers of acute kidney injury. Contrib Nephrol 156:203–212PubMedCrossRefGoogle Scholar
  11. 11.
    Stacul F, Adam A, Becker CR, Davidson C, Lameire N, McCullough PA, Tumlin J (2006) Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol 98(Suppl):59K–77KPubMedCrossRefGoogle Scholar
  12. 12.
    Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P (2003) Differential gene expression following early renal ischemia-reperfusion. Kidney Int 63:1714–1724PubMedCrossRefGoogle Scholar
  13. 13.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of NGAL as a novel urinary biomarker for ischemic injury. J Am Soc Nephrol 4:2534–2543CrossRefGoogle Scholar
  14. 14.
    Devarajan P, Mishra J, Supavekin S, Patterson LT, Potter SS (2003) Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery and novel therapeutics. Mol Genet Metab 80:365–376PubMedCrossRefGoogle Scholar
  15. 15.
    Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin (NGAL): a novel urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315PubMedCrossRefGoogle Scholar
  16. 16.
    Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by NGAL. J Am Soc Nephrol 15:3073–3082PubMedCrossRefGoogle Scholar
  17. 17.
    Mori K, Lee HT, Rapoport D, Drexler I, Foster K, Yang J, Schmidt-Ott, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia. J Clin Invest 115:610–621PubMedCrossRefGoogle Scholar
  18. 18.
    Mishra J, Ma Q, Kelly C, Mitsnefes M, Mori K, Barasch J, Devarajan P (2006) Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21:856–863PubMedCrossRefGoogle Scholar
  19. 19.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury following cardiac surgery. Lancet 365:1231–1238PubMedCrossRefGoogle Scholar
  20. 20.
    Parikh CR, Jani A, Mishra J, Ma Q, Kelly C, Barasch J, Edelstein CL, Devarajan P (2006) Urine NGAL and IL-18 are predictive biomarkers for DGF following kidney transplantation. Am J Transplant 6:1639–1645PubMedCrossRefGoogle Scholar
  21. 21.
    Trachtman H, Christen E, Cnaan A, Patrick J, Mai V, Mishra J, Jain A, Bullington N, Devarajan P (2006) Urinary NGAL in D+HUS: A novel marker of renal injury. Pediatr Nephrol 21:989–994PubMedCrossRefGoogle Scholar
  22. 22.
    Brunner HI, Mueller M, Rutherford C, Passo MH, Witte D, Grom A, Mishra J, Devarajan P (2006) Urinary NGAL as a biomarker of nephritis in childhood-onset SLE. Arthritis Rheum 54:2577–2584PubMedCrossRefGoogle Scholar
  23. 23.
    Mitsnefes M, Kathman T, Mishra J, Kartal J, Khoury P, Nickolas T, Barasch J, Devarajan P (2007) Serum NGAL as a marker of renal function in children with chronic kidney disease. Pediatr Nephrol 22:101–108PubMedCrossRefGoogle Scholar
  24. 24.
    Xu S, Venge P (2000) Lipocalins as biomarkers of disease. Biochim Biophys Acta 1482:298–307PubMedGoogle Scholar
  25. 25.
    Schmidt-Ott KM, Mori K, Kalandadze A, Li JY, Paragas N, Nicholas T, Devarajan P, Barasch J (2006) NGAL-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens 15:442–449PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt-Ott KM, Mori K, Li JY, Kalandadze A, Cohen DJ, Devarajan P, Barasch J (2007) Dual action of neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 18:407–413PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Q, Nilsen-Hamilton M (1995) Identification of a new acute phase protein. J Biol Chem 270:22565–22570PubMedCrossRefGoogle Scholar
  28. 28.
    Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S (2006) Neutrophil gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol 26:287–292PubMedCrossRefGoogle Scholar
  29. 29.
    Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S (2007) Neutrophil gelatinase-associated lipocalin (NGAL) correlations with cystatin C, serum creatinine and eGFR in patients with normal serum creatinine undergoing coronary angiography. Nephrol Dial Transplant 22:295–296PubMedCrossRefGoogle Scholar
  30. 30.
    Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122PubMedCrossRefGoogle Scholar
  31. 31.
    Duan SB, Wu HW, Luo JA, Liu FY (1999) Assessment of renal function in the early stages of nephrotoxicity induced by iodinated contrast media. Nephron 83:122–125PubMedCrossRefGoogle Scholar
  32. 32.
    Hampel DJ, Sansome C, Sha M, Brodsky S, Lawson WE, Goligorsky MS (2001) Toward proteomics in uroscopy: urinary protein profiles after radiocontrast medium administration. J Am Soc Nephrol 12:1026–1035PubMedGoogle Scholar

Copyright information

© IPNA 2007

Authors and Affiliations

  • Russel Hirsch
    • 1
  • Catherine Dent
    • 1
  • Holly Pfriem
    • 1
  • Janene Allen
    • 1
  • Robert H. BeekmanIII
    • 1
  • Qing Ma
    • 2
  • Sudha Dastrala
    • 2
  • Michael Bennett
    • 2
  • Mark Mitsnefes
    • 2
  • Prasad Devarajan
    • 2
    • 3
  1. 1.Division of Cardiology, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati College of MedicineCincinnatiUSA
  3. 3.Division of Nephrology & Hypertension, MLC 7022Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations