Pediatric Nephrology

, Volume 22, Issue 5, pp 661–669 | Cite as

Familial steroid-sensitive nephrotic syndrome in Southern Israel: clinical and genetic observations

  • Daniel LandauEmail author
  • Tal Oved
  • Dan Geiger
  • Luba Abizov
  • Hanna Shalev
  • Ruti Parvari
Original Article


Reports on genetically informative steroid-responsive (sensitive) idiopathic nephrotic syndrome (SSNS) families are lacking. We studied an extended SSNS Bedouin (B) family with a high rate of consanguinity. The clinical presentation and steroid response of its 11 affected individuals were similar to those of sporadic SSNS (spontaneous remission towards puberty and minimal change disease by kidney biopsy). Genome-wide linkage analysis, using a 382 microsatellite-markers mapping set and additional markers adjacent to 80 candidate genes of the index family, did not support linkage to any chromosomal locus. Retrospective analysis of all additional children with SSNS treated by our institution in the past 20 years (n = 96, 50% of them of Jewish origin) revealed another five non-related B families with 2–3 first-degree cousins affected with SSNS in each. The overall familial SSNS rate among the B population (excluding the index family) was 28%, compared with 4% among Jews (Js) (OR 1.8–64, P < 0.005). There were more Bs with simple SSNS than there were Js (71% and 40%, respectively; OR 3.58, 95% CI 1.41–9.23, P < 0.01). In summary, SSNS in this index family was not linked to any of the presently known chromosomal loci nor predicted to be caused by mutation in any one of a list of genes associated with nephrotic syndrome (NS). The presence of other B families affected by SSNS supports the role for susceptibility genes enrichment, exposing highly consanguineous populations to an increased incidence of SSNS.


Chromosome mapping Consanguinity Nephrosis Lipoid Arabs Jews 





focal segmental glomerulosclerosis


glomerular basement membrane




logarithmic odds


minimal change nephrotic syndrome


nephrotic syndrome


steroid sensitive idiopathic nephrotic syndrome



Dan Geiger’s research was supported by the Israeli Ministry of Science. This study was partially supported by a research grant from the National Institute of Biotechnology in the Negev. We thank Prof. Ilana Shoham-Vardi for her help with the statistical calculations.


  1. 1.
    White RH (1973) The familial nephrotic syndrome. I: A European survey. Clin Nephrol 1:215–219PubMedGoogle Scholar
  2. 2.
    Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1:575–582PubMedCrossRefGoogle Scholar
  3. 3.
    Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, Dahan K, Gubler MC, Niaudet P, Antignac C (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24:349–354PubMedCrossRefGoogle Scholar
  4. 4.
    Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, Pitz S, Schumacher V, Royer-Pokora B, Wuhl E, Cochat P, Bouvier R, Kraus C, Mark K, Madlon H, Dotsch J, Rascher W, Maruniak-Chudek I, Lennert T, Neumann LM, Reis A (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13:2625–2632PubMedCrossRefGoogle Scholar
  5. 5.
    Fuchshuber A, Gribouval O, Ronner V, Kroiss S, Karle S, Brandis M, Hildebrandt F (2001) Clinical and genetic evaluation of familial steroid-responsive nephritic syndrome in childhood. J Am Soc Nephrol 12:374–378PubMedGoogle Scholar
  6. 6.
    Negev Development Authority and Negev Center for Regional Development, Ben Gurion University. Statistical Report.
  7. 7.
    Barratt TM, Avner ED, Harmon WE (1999) Pediatric nephrology, 4th edn. Lippincott, Williams & Wilkins, Baltimore, pp 731–747Google Scholar
  8. 8.
    Statistical abstract of Israel No. 57, CBS, Central Bureau of Statistics, Jerusalem, 2006
  9. 9.
    Fishelson M, Geiger D (2002) Exact genetic linkage computations for general pedigrees. Bioinformatics 18(Suppl 1):S189–198PubMedGoogle Scholar
  10. 10.
    Shalhoub RJ (1974) Pathogenesis of lipid nephrosis: a disorder on T-cell function. Lancet 2:556–560PubMedCrossRefGoogle Scholar
  11. 11.
    Yoshizawa N, Kusumi Y, Matsumoto K, Oshima S, Takeuchi A, Kawamura O, Kubota T, Kondo S, Niwa H (1989) Studies of a glomerular permeability factor in patients with minimal-change nephrotic syndrome. Nephron 51:370–376PubMedCrossRefGoogle Scholar
  12. 12.
    Schnaper HW, Aune TM (1987) Steroid-sensitive mechanism of soluble immune response suppressor production in steroid-responsive nephrotic syndrome. J Clin Invest 79:257–264PubMedGoogle Scholar
  13. 13.
    Savin VJ, Sharma R, Sharma M, McCarthy ET, Swan SK, Ellis E, Lovell H, Warady B, Gunwar S, Chonko AM, Artero M, Vincenti F (1996) Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N Engl J Med 334:878–883PubMedCrossRefGoogle Scholar
  14. 14.
    Le Berre L, Godfrin Y, Gunther E, Buzelin F, Perretto S, Smit H, Kerjaschki D, Usal C, Cuturi C, Soulillou JP, Dantal J (2002) Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats. J Clin Invest 109:491–498PubMedCrossRefGoogle Scholar
  15. 15.
    Grimbert P, Audard V, Remy P, Lang P, Sahali D (2003) Recent approaches to the pathogenesis of minimal-change nephrotic syndrome. Nephrol Dial Transplant 18:245–248PubMedCrossRefGoogle Scholar
  16. 16.
    Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P (2004) Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 113:1390–1397PubMedCrossRefGoogle Scholar
  17. 17.
    Ruf RG, Schultheiss M, Lichtenberger A, Karle SM, Zalewski I, Mucha B, Everding AS, Neuhaus T, Patzer L, Plank C, Haas JP, Ozaltin F, Imm A, Fuchshuber A, Bakkaloglu A, Hildebrandt F; APN Study Group (2004) Prevalence of WT1 mutations in a large cohort of patients with steroid-resistant and steroid-sensitive nephrotic syndrome. Kidney Int 66:564–570PubMedCrossRefGoogle Scholar
  18. 18.
    Sako M, Nakanishi K, Obana M, Yata N, Hoshii S, Takahashi S, Wada N, Takahashi Y, Kaku Y, Satomura K, Ikeda M, Honda M, Iijima K, Yoshikawa N (2005) Analysis of NPHS1, NPHS2, ACTN4, and WT1 in Japanese patients with congenital nephrotic syndrome. Kidney Int 67:1248–1255PubMedCrossRefGoogle Scholar
  19. 19.
    Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24:251–256PubMedCrossRefGoogle Scholar
  20. 20.
    Boner G, Cox AJ, Kelly DJ, Tobar A, Bernheim J, Langham RG, Cooper ME, Gilbert RE (2003) Does vascular endothelial growth factor (VEGF) play a role in the pathogenesis of minimal change disease? Nephrol Dial Transplant 18:2293–2299PubMedCrossRefGoogle Scholar
  21. 21.
    Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995) The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet 10:400–406PubMedCrossRefGoogle Scholar
  22. 22.
    Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS (1999) Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286:312–315PubMedCrossRefGoogle Scholar
  23. 23.
    Clark AG, Vaughan RW, Stephens HA, Chantler C, Williams DG, Welsh KI (1990) Genes encoding the beta-chains of HLA-DR7 and HLA-DQw2 define major susceptibility. Clin Sci (Lond) 78:391–397Google Scholar
  24. 24.
    Tain YL, Liu CA, Yang KD (2002) Implications of blood soluble and cell surface tumor necrosis factor receptors in childhood nephrotic syndrome. Pediatr Nephrol 17:926–932PubMedCrossRefGoogle Scholar
  25. 25.
    Uemichi T, Liepnieks JJ, Benson MD (1994) Hereditary renal amyloidosis with a novel variant fibrinogen. J Clin Invest 93:731–736PubMedCrossRefGoogle Scholar
  26. 26.
    Costa PP, Figueira AS, Bravo FR (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA 75:4499–4503PubMedCrossRefGoogle Scholar
  27. 27.
    Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, Botto M (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31:424–428PubMedGoogle Scholar
  28. 28.
    Neuhausen SL, Weizman Z, Camp NJ, Elbedour K, Sheffield VC, Zone JJ, Carmi R (2002) HLA-DQA1-DQB1 genotypes in Bedouin families with celiac disease. Hum Immunol 63:502–507PubMedCrossRefGoogle Scholar
  29. 29.
    Alsana F, Porath A, Binsztok M, Weizman Z (2000) Factors affecting the incidence of celiac disease in two different populations. J Pediatr Gastroenterol Nutr 31:S211Google Scholar
  30. 30.
    Neuhausen SL, Feolo M, Camp NJ, Farnham J, Book L, Zone JJ (2002) Genome-wide linkage analysis for celiac disease in North American families. Am J Med Genet 111:1–9PubMedCrossRefGoogle Scholar
  31. 31.
    Peltonen L, Palotie A, Lange K (2000) Use of population isolates for mapping complex traits. Nat Rev Genet 1:182–190PubMedCrossRefGoogle Scholar
  32. 32.
    Weitzman D, Shoham-Vardi I, Elbedour K, Belmaker I, Siton Y, Carmi R (2000) Factors affecting the use of prenatal testing for fetal anomalies in a traditional society. Community Genet 3:61–70CrossRefGoogle Scholar
  33. 33.
    Zlotogora J (2002) Molecular basis of autosomal recessive diseases among the Palestinian Arabs. Am J Med Genet 109:176–182PubMedCrossRefGoogle Scholar
  34. 34.
    Zlotogora J, Shalev S, Habiballah H, Barjes S (2000) Genetic disorders among Palestinian Arabs: 3. Autosomal recessive disorders in a single village. Am J Med Genet 92:343–345PubMedCrossRefGoogle Scholar
  35. 35.
    Ombra MN, Forabosco P, Casula S, Angius A, Maestrale G, Petretto E, Casu G, Colussi G, Usai E, Melis P, Pirastu M (2001) Identification of a new candidate locus for uric acid nephrolithiasis. Am J Hum Genet 68:1119–1129PubMedCrossRefGoogle Scholar
  36. 36.
    Ruf RG, Fuchshuber A, Karle SM, Lemainque A, Huck K, Wienker T, Otto E, Hildebrandt F (2003) Identification of the first gene locus (SSNS1) for steroid-sensitive nephrotic syndrome on chromosome 2p. J Am Soc Nephrol 14:1897–1900PubMedCrossRefGoogle Scholar
  37. 37.
    Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148PubMedCrossRefGoogle Scholar
  38. 38.
    de Zoysa JR, Topham PS (2005) Podocyte biology in human disease. Nephrology 10:362–367PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2007

Authors and Affiliations

  • Daniel Landau
    • 1
    • 4
    Email author
  • Tal Oved
    • 2
  • Dan Geiger
    • 3
  • Luba Abizov
    • 2
  • Hanna Shalev
    • 1
    • 4
  • Ruti Parvari
    • 2
  1. 1.Department of Pediatrics, Faculty of Health SciencesBen Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Department of Developmental Genetics and Virology, Faculty of Health SciencesBen Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Computer Science DepartmentTechnionHaifaIsrael
  4. 4.Department of PediatricsSoroka Medical CenterBeer ShevaIsrael

Personalised recommendations