Pediatric Nephrology

, Volume 22, Issue 2, pp 258–264 | Cite as

Lack of evidence of hypervolemia in children with insulin-dependent diabetes mellitus

  • Ann RaesEmail author
  • Sarah Van Aken
  • Margarita Craen
  • Raymond Donckerwolcke
  • Johan Vande Walle
Original Article


Hypervolemia is considered to play a major role in the pathogenesis of diabetic vasculo- and nephropathy. The aim of our study is to determine whether children and adolescents with insulin-dependent diabetes mellitus (IDDM) experience alterations in blood volume (BV) before onset of apparent nephropathy. BV (calculated as the sum of measured plasma volume (PV) and red cell volume (RCV)) was determined in 31 children (9–16 yr) with a mean duration of IDDM of 6.6 yr and without microalbuminuria. Due to dependence of these values on age, size and sex, all data were normalised for body size parameters. While no statistical difference for BV normalised for lean body mass (LBM) (86.98±9.5 ml/kg) was found in diabetic children compared with our control population (84.91±12.08 ml/kg), a difference could be shown when normalised for body surface area (BSA) (diabetic children 2.37±0.3 L/m2; control population 2.15±0.38 L/m2, p=0.002). Increased BV is only present when normalising for BSA and not for the theoretical superior LBM-index. Because the study population exhibited a poor glycemic control (HbA1c 10.2±2.4 %), an influence of glucosuria-induced polyuria on BV cannot be excluded. Taking into account these limitations our data do not confirm the presence of hypervolemia before onset of diabetic nephropathy.


Insulin-dependent diabetes mellitus Blood volume Lean body mass Body surface area F-cell ratio 


  1. 1.
    Brochner-Mortensen J (1973) Glomerular filtration rate and extracellular fluid volumes during normoglycemia and moderate hyperglycemia in diabetics. Scand J Clin Lab Invest 32:311–316PubMedGoogle Scholar
  2. 2.
    Fauchald P, Norseth J, Jervell J (1985) Transcapillary colloied osmotic gradient, plasma volume and interstitial fluid volume in long-term type 1 (insulin-dependent) diabetes. Diabetologia 28:269–273PubMedCrossRefGoogle Scholar
  3. 3.
    Tuck M, Corry DB (1989) The kidney in diabetes mellitus, contemporary issues in nephrology. Churchill Livingstone, New York, pp 115–145Google Scholar
  4. 4.
    O’Hare JA, Ferriss JB, Brady D, Twomey B, O’Sullivan DJ (1985) Exchangeable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension 7 (suppl 2):II43–II48PubMedGoogle Scholar
  5. 5.
    O’Hare JP, Roland JM, Walters SG, Corrall RJM (1986) Impaired sodium excretion in response to volume expansion induced by water immersion in insulin-dependent diabetes mellitus. Clin Sci 71:403–409PubMedGoogle Scholar
  6. 6.
    Feldt-Rasmussen B, Mathiesen ER, Deckert T, Giese J, Christensen NJ, Bert-Hansen L (1987) Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1(insulin-dependent) diabetes mellitus. Diabetologia 30:610–617PubMedGoogle Scholar
  7. 7.
    Revisan R, Fioretto P, Semplioni A, Coocher G, Mantero F, Rocco S (1990) Role of insulin and atrial natriuretic peptide in sodium retention in insulin-treated IDDM patients during isotonic volume expansion. Diabetes 39:289–298Google Scholar
  8. 8.
    Ilstrup KM, Keane WF, Michels LD (1981) Intravascular and extracellular volumes in the diabetic rat. Life Sci 29:717–724PubMedCrossRefGoogle Scholar
  9. 9.
    Christlieb AR (1974) Renin, angiotensin and norepinephrine in alloxan diabetes. Diabetes 23:962–970PubMedGoogle Scholar
  10. 10.
    Bent-Hansen L (1994) Plasma disappearance and distribution volume of polyfructosan in type 1 (insulin-dependent) diabetes mellitus. Diab Res 5:121–128Google Scholar
  11. 11.
    De Chatel R, Weidman P, Flammer J, Ziegler WH, Beretta-Piccoli C, Vetter W (1996) Sodium, renin, aldosterone, catecholamines and blood pressure in diabetes mellitus. Kidney Int 12:412–421Google Scholar
  12. 12.
    Boer P (1984) Estimated lean body mass as an index for normalization of body fluid volumes in human. Am J Physiol 247:F632–F636PubMedGoogle Scholar
  13. 13.
    Raes A, Van Aken S, Craen M, Donckerwolcke R, Vande Walle J (2006) A reference frame for blood volume in children and adolescents. BMC Pediatr 6:3PubMedCrossRefGoogle Scholar
  14. 14.
    International Committee for Standardisation in Haematology (1990) Recommended methods for measurement of red cell and plasma volume. J Nucl Med 21:793–800Google Scholar
  15. 15.
    Chaplin H, Mollison PL, Vetter H (1953) The body/venous hematocrit ratio: its constancy over a wide range. J Clin Invest 32:1309–1316PubMedGoogle Scholar
  16. 16.
    Sawka MN, Young AJ, Pandolf KB, Dennis RC, Valeri CR (1992) Erythrocyte, plasma and blood volume of healthy young men. Med Sci Sports Exerc 24:447–453PubMedGoogle Scholar
  17. 17.
    DuBois D, Dubois EF (1916) Clinical calorimetry. A formula to estimate surface area if height and weight be known. Arch Intern Med 17:863–891Google Scholar
  18. 18.
    Vande Walle JG, Donckerwolcke RAMG, Wimersma Greidanus TB, Joles JA, Koomans HA (1996) Renal sodium handling in children with nephrotic relapse: relation to hypovolemic symptoms. Nephrol Dial Transplant 11:2202–2208PubMedGoogle Scholar
  19. 19.
    Nicholson J, Zilva J (1964) Body constituents and functions in relation to height and weight. Clin Sci 27:97–109PubMedGoogle Scholar
  20. 20.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576CrossRefGoogle Scholar
  21. 21.
    Ferrante E, Pitzalis G, Vania A, De Angelis P, Guidi R, Fontana L, Ferrante L, Cervoni M, Multari G (1999) Nutritional status, obesity, and metabolic balance in pediatric patients with type I diabetes mellitus. Minerva Endo 24:69–76Google Scholar
  22. 22.
    Vande Walle J, Donckerwolcke R, Boer P, v.Isselt HW, Koomans HA, Joles JA (1996) Blood volume, colloid osmotic pressure and F-cell ratio in children with the nephrotic syndrome. Kidney Int 49:1471–1477Google Scholar
  23. 23.
    Hovind P, Tarnow L, Rossing P, Jensen BR, Graae M, Torp I, Binder C, Parving HH (2004) Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328:1105PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Ann Raes
    • 1
    Email author
  • Sarah Van Aken
    • 2
  • Margarita Craen
    • 2
  • Raymond Donckerwolcke
    • 1
  • Johan Vande Walle
    • 1
  1. 1.Department of Pediatric NephrologyUniversity HospitalGentBelgium
  2. 2.Department of Pediatric EndocrinologyUniversity HospitalGentBelgium

Personalised recommendations