Pediatric Nephrology

, 22:101

Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease

  • Mark M. Mitsnefes
  • Thelma S. Kathman
  • Jaya Mishra
  • Janis Kartal
  • Philip R. Khoury
  • Thomas L. Nickolas
  • Jonathan Barasch
  • Prasad Devarajan
Original Article

Abstract

Very few biomarkers exist for monitoring chronic kidney disease (CKD). We have recently shown that serum neutrophil gelatinase-associated lipocalin (NGAL) represents a novel biomarker for early identification of acute kidney injury. In this study, we hypothesized that serum NGAL may also represent a biomarker for the quantitation of CKD. Forty-five children with CKD stages 2–4 were prospectively recruited for measurement of serum NGAL, serum cystatin C, glomerular filtration rate (GFR) by Ioversol clearance, and estimated GFR (eGFR) by Schwartz formula. Serum NGAL significantly correlated with cystatin C (r=0.74, P<0.000). Both NGAL and cystatin C significantly correlated with measured GFR (r=0.62, P<0.000; and r=0.71, P<0.000, respectively) as well as with eGFR (r=0.66, P<0.000 and r=0.59, P<0.000, respectively). At GFR levels of ≥30 ml/min per 1.73 m2, serum NGAL, cystatin C, and eGFR were all significantly correlated with measured GFR. However, in subjects with lower GFRs (<30 ml/min per 1.73 m2), serum NGAL levels correlated best with measured GFR (r=0.62), followed by cystatin C (r=0.41). We conclude that (a) both serum NGAL and cystatin C may prove useful in the quantitation of CKD, and (b) by correlation analysis, NGAL outperforms cystatin C and eGFR at lower levels of measured GFR.

Keywords

Chronic renal failure End-stage renal disease Lipocalin Cystatin C Glomerular filtration rate 

References

  1. 1.
    Meguid El-Nahas A, Bello AK (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340PubMedGoogle Scholar
  2. 2.
    Bello AK, Nwankwo E, El Nahas AM (2005) Prevention of chronic kidney disease: a global challenge. Kidney Int 98:S11–S17CrossRefGoogle Scholar
  3. 3.
    Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, Zeeuw D, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 67:2089–2100PubMedCrossRefGoogle Scholar
  4. 4.
    United States Renal Data System: Annual Data Report (2004) Precis: background on the US ESRD program. Am J Kidney Dis 45:S15–S28Google Scholar
  5. 5.
    United States Renal Data System: Annual Data Report (2004) Pediatric ESRD. Am J Kidney Dis 45:S153–S166Google Scholar
  6. 6.
    Chadha V, Warady BA (2005) Epidemiology of pediatric chronic kidney disease. Adv Chronic Kidney Dis 12:343–352PubMedCrossRefGoogle Scholar
  7. 7.
    Chesney RW, Brewer E, Moxey-Mims M, Watkins S, Furth SL, Harmon WE, Fine RN, Portman RJ, Warady BA, Salusky IB, Langman CB, Gipson D, Scheidt P, Feldman H, Kaskel FJ, Siegel NJ (2006) Report of an NIH task force on research priorities in chronic kidney disease in children. Pediatr Nephrol 21:14–25PubMedCrossRefGoogle Scholar
  8. 8.
    Clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification (2002) National Kidney Foundation: K/DOQI clinical practice guidelines. Am J Kidney Dis 39:S1–S266CrossRefGoogle Scholar
  9. 9.
    Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P (2003) Differential gene expression following early renal ischemia-reperfusion. Kidney Int 63:1714–1724PubMedCrossRefGoogle Scholar
  10. 10.
    Mishra J, Qing M, Prada A, Zahedi K, Yang Y, Barasch J, Devarajan P (2003) Identification of NGAL as a novel early urinary marker for ischemic renal injury. J Am Soc Nephrol 14:2534–2543PubMedCrossRefGoogle Scholar
  11. 11.
    Devarajan P, Mishra J, Supavekin S, Patterson LT, Potter SS (2003) Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery and novel therapeutics. Mol Genet Metab 80:365–376PubMedCrossRefGoogle Scholar
  12. 12.
    Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil Gelatinase-Associated Lipocalin (NGAL): a novel urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315PubMedCrossRefGoogle Scholar
  13. 13.
    Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by NGAL. J Am Soc Nephrol 15:3073–3082PubMedCrossRefGoogle Scholar
  14. 14.
    Devarajan P (2005) Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr 17:193–199PubMedCrossRefGoogle Scholar
  15. 15.
    Mori K, Lee HT, Rapoport D, Drexler I, Foster K, Yang J, Schmidt-Ott, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest 115:610–621PubMedGoogle Scholar
  16. 16.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury following cardiac surgery. Lancet 365:1231–1238PubMedCrossRefGoogle Scholar
  17. 17.
    Nguyen M, Ross G, Dent C, Devarajan P (2005) Early prediction of acute renal injury using urinary proteomics. Am J Nephrol 25:318–326PubMedCrossRefGoogle Scholar
  18. 18.
    Mishra J, Ma Q, Kelly K, Mitsnefes M, Mori K, Barasch J, Devarajan P (2006) Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol 21:856–863PubMedCrossRefGoogle Scholar
  19. 19.
    Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526PubMedCrossRefGoogle Scholar
  20. 20.
    Stake G, Monclair T (1991) A single plasma sample method for estimation of the glomerular filtration rate in infants and children using iohexol: establishment of a body weight-related formula for the distribution volume of iohexol. Scand J Clin Lab Invest 51:335–342PubMedCrossRefGoogle Scholar
  21. 21.
    Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122PubMedCrossRefGoogle Scholar
  22. 22.
    Filler G, Foster J, Acker A, Lepage N, Akbari A, Ehrich JH (2005) The Cockcroft-Gault formula should not be used in children. Kidney Int 67:2321–2324PubMedCrossRefGoogle Scholar
  23. 23.
    Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR–history, indications, and future research. Clin Biochem 38:1–8PubMedCrossRefGoogle Scholar
  24. 24.
    White C, Akbari A, Hussain N, Dinh L, Filler G, Lepage N, Knoll GA (2005) Estimating glomerular filtration rate in kidney transplantation: a comparison between serum creatinine and cystatin C-based methods. J Am Soc Nephrol 16:3763–3770PubMedCrossRefGoogle Scholar
  25. 25.
    Foster J, Reisman W, Lepage N, Filler G (2006) Influence of commonly used drugs on the accuracy of cystatin C-derived glomerular filtration rate. Pediatr Nephrol 21:235–238PubMedCrossRefGoogle Scholar
  26. 26.
    Herget-Rosenthal S, Pietruck F, Volbracht L, Philipp T, Kribben A (2005) Serum cystatin C–a superior marker of rapidly reduced glomerular filtration after uninephrectomy in kidney donors compared to creatinine. Clin Nephrol 64:41–46PubMedGoogle Scholar
  27. 27.
    Bardi E, Bobok I, Olah AV, Olah E, Kappelmayer J, Kiss C (2004) Cystatin C is a suitable marker of glomerular function in children with cancer. Pediatr Nephrol 19:1145–1147PubMedCrossRefGoogle Scholar
  28. 28.
    Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985PubMedCrossRefGoogle Scholar
  29. 29.
    Dharnidharka VR, Kwon C, Stevens G (2003) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226CrossRefGoogle Scholar
  30. 30.
    Seikaly MG, Loleh S, Rosenblum A, Browne R (2004) Validation of the Center for Medicare and Medicaid Services algorithm for eligibility for dialysis. Pediatr Nephrol 19:893–897PubMedCrossRefGoogle Scholar
  31. 31.
    Biezeveld MH, van Mierlo G, Lutter R, Kuipers IM, Dekker T, Hack CE, Newburger JW, Kuijpers TW (2005) Sustained activation of neutrophils in the course of Kawasaki disease: an association with matrix metalloproteinases. Clin Exp Immunol 141:183–188PubMedCrossRefGoogle Scholar
  32. 32.
    Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J, Thoren P, Hansson GK (2005) Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol 26:136–142PubMedCrossRefGoogle Scholar
  33. 33.
    Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C (2005) Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol 16:2449–2455PubMedCrossRefGoogle Scholar
  34. 34.
    Tonelli M, Sacks F, Pfeffer M, Jhangri GS, Curhan G (2005) Cholesterol and Recurrent Events (CARE) Trial Investigators: biomarkers of inflammation and progression of chronic kidney disease. Kidney Int 68:237–245PubMedCrossRefGoogle Scholar
  35. 35.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370PubMedCrossRefGoogle Scholar
  36. 36.
    Warnock DG (2005) Towards a definition and classification of acute kidney injury. J Am Soc Nephrol 16:3149–3150PubMedCrossRefGoogle Scholar
  37. 37.
    Fried LF, Katz R, Sarnak MJ, Shlipak MG, Chaves PH, Jenny NS, Stehman-Breen C, Gillen D, Bleyer AJ, Hirsch C, Siscovick D, Newman AB (2005) Kidney function as a predictor of noncardiovascular mortality. J Am Soc Nephrol 16:3728–3735PubMedCrossRefGoogle Scholar
  38. 38.
    Shlipak MG, Fyr CL, Chertow GM, Harris TB, Kritchevsky SB, Tylavsky FA, Satterfield S, Cummings SR, Newman AB, Fried LF (2006) Cystatin C and mortality risk in the elderly: the health, aging, and body composition study. J Am Soc Nephrol 17:254–261PubMedCrossRefGoogle Scholar
  39. 39.
    Gorodetskaya I, Zenios S, McCulloch CE, Bostrom A, Hsu CY, Bindman AB, Go AS, Chertow GM (2005) Health-related quality of life and estimates of utility in chronic kidney disease. Kidney Int 68:2801–2808PubMedCrossRefGoogle Scholar
  40. 40.
    Trivedi HS, Pang MM, Campbell A, Saab P (2002) Slowing the progression of chronic renal failure: economic benefits and patients’ perspectives. Am J Kidney Dis 39:721–729PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Mark M. Mitsnefes
    • 1
  • Thelma S. Kathman
    • 1
  • Jaya Mishra
    • 1
  • Janis Kartal
    • 1
  • Philip R. Khoury
    • 2
  • Thomas L. Nickolas
    • 3
  • Jonathan Barasch
    • 3
  • Prasad Devarajan
    • 1
  1. 1.Divisions of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati School of MedicineCincinnatiUSA
  2. 2.Division of Cardiology, Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati School of MedicineCincinnatiUSA
  3. 3.Renal Section, Department of Medicine, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations