Advertisement

Pediatric Nephrology

, Volume 21, Issue 10, pp 1413–1418 | Cite as

Left ventricular mass and heart sympathetic activity after renal transplantation in children and young adults

  • Juan Manuel Guízar-Mendoza
  • Norma Amador-LiconaEmail author
  • Efrén Edgard Lozada
  • Leticia Rodriguez
  • María Gutiérrez-Navarro
  • Luis Antonio Dubey-Ortega
  • José Trejo-Bellido
  • José de Jesús Encarnación
  • María De la Cruz Ruiz-Jaramillo
Original Article

Abstract

Recent studies considered that an increase in sympathetic activity (SA) may be responsible for left ventricular hypertrophy (LVH). Before and after renal transplantation (RT), we evaluated changes on left ventricular mass (LVM) and SA in 40 end-stage renal disease patients between 8 and 35 years old. Hypertension (95.0% vs. 71.0%; p=0.005), use of combined antihypertensive drugs (57.5% vs. 30.0%; p=0.01), and LVH (77.5% vs. 52.5%; p=0.01) significantly decreased after RT whereas low-to-high frequency ratio (LF/HF), which represents SA, increased (3.1 vs. 5.3; p=0.0001). However, LVM regressors (with decrease on LVM index more than 20%) showed a trend of lower change on LF/HF ratio (1.6 vs. 2.4; p= 0.09) than nonregressors. Living-donor graft, baseline LVM, use of antihypertensive drugs, lower change on LF/HF ratio, and lower systolic blood pressure levels were associated with LVM regression in the simple correlation analysis. However, in the logistic regression analysis, only baseline LVM and donor type remained in the model (R2=0.35; p=0.0003). Thus, LVH decreased after RT and was related to baseline LVM and living-donor type. However, it is possible that the higher persistence of LVH after RT could be explained at least in part by increase in heart sympathetic activity and use of immunosuppressors.

Keywords

Renal transplantation Left ventricular mass Heart sympathetic activity 

References

  1. 1.
    Offner G, Latta K, Hoyer PF, Baum HJ, Ehrich JH, Pichlmayr R, Brodehl Jl (1999) Kidney transplanted children come of age. Kidney Int 55:1509–1517CrossRefGoogle Scholar
  2. 2.
    The USRDS 1998 Annual Report (1998) Causes of death. Am J Kidney Dis 32 (Suppl 1):S81–S88Google Scholar
  3. 3.
    Orth SR, Amann K, Strojek K, Ritz E (2001) Sympathetic overactivity and arterial hypertension in renal failure. Nephrol Dial Transplant 16 (Suppl 1):67–69CrossRefGoogle Scholar
  4. 4.
    Habicht A, Watschinger B (2003) Sympathetic overactivity and the kidney. Wien Klin Wochenschr 30:634–640CrossRefGoogle Scholar
  5. 5.
    Kowalewski M, Baszun-Stepanluk E, Urban M, Peczyñska J (2005) Heart rate variability and left ventricular mass in slim children and young adults with hypertension. Kardiol Pol 63:605–610PubMedGoogle Scholar
  6. 6.
    Morris ST, McMurray JJ, Rodger RS, Farmer R, Jardine AG (2000) Endothelial dysfunction in renal transplant recipients maintained on cyclosporine. Kidney Int 57:1100–1106CrossRefGoogle Scholar
  7. 7.
    Ferreira SRC, Moisés VA, Tavares A, Pacheco-Silva A (2002) Cardiovascular effects of successful renal transplantation: a 1 year sequential study of left ventricular morphology and function, and 24-hour blood pressure profile. Transplantation 74:1580–1587CrossRefGoogle Scholar
  8. 8.
    Mitsnefes MM, Daniels SR, Schwartz SM, Khoury P, Strife CF (2001) Changes in left ventricular mass in children and adolescents during chronic dialysis. Pediatr Nephrol 16:318–323CrossRefGoogle Scholar
  9. 9.
    Dählof B, Pennert K, Hansson L (1992) Reversal of left ventricular hypertrophy in hypertensive patients: a meta-analysis of 109 treatment studies. Am J Hypertens 5:95–110CrossRefGoogle Scholar
  10. 10.
    Jackson AS, Pollock M (1985) Practical assessment of body composition. Phys Sports Med 13:76–90CrossRefGoogle Scholar
  11. 11.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee (2003) The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289:2560–2572CrossRefGoogle Scholar
  12. 12.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(Suppl 2):555–576CrossRefGoogle Scholar
  13. 13.
    Devereux RB, Lutas EM, Casale PN (1984) Standardization of M mode echocardiographic left ventricular anatomic measurements. J Am Coll Cardiol 4:1222–1230CrossRefGoogle Scholar
  14. 14.
    Devereaux RB, Reicheck N (1977) Echocardiographic determination of left ventricular mass in man: anatomic validation of method. Circulation 55:613–618CrossRefGoogle Scholar
  15. 15.
    De Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and of the impact of overweight. J Am Coll Cardiol 20:1251–1260CrossRefGoogle Scholar
  16. 16.
    De Simone G, Devereux RB, Daniela SR, Koren MJ, Meyer RA, Laragh JH (1995) Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062CrossRefGoogle Scholar
  17. 17.
    Mitsnefes MM, Schwartz SM, Daniels SR, Kimball TR, Khoury P, Strife CF (2001) Changes in left ventricular mass index in children and adolescents after renal transplantation. Pediatr Transplant 5:279–284CrossRefGoogle Scholar
  18. 18.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065CrossRefGoogle Scholar
  19. 19.
    Sarnak MJ, Cochair LA, Cochair SA, Cochair CJ, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW (2003) Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 108:2154–2159CrossRefGoogle Scholar
  20. 20.
    Hernández D (2004) Left ventricular hypertrophy after renal transplantation: new approach to a deadly disorder. Nephrol Dial Transplant 19:1682–1686CrossRefGoogle Scholar
  21. 21.
    Dahlof B, Pennert K, Hansson L (1992) Reversal of left ventricular hypertrophy in hypertensive patients: a meta-analysis of 109 treatment studies. Am J Hypertens 5:95–110CrossRefGoogle Scholar
  22. 22.
    Fishel RS, Eisenberg S, Shai SY, Redden RA, Bernstein KE, Berk BC (1995) Glucocorticoids induce angiotensin-converting enzyme expression in vascular smooth muscle. Hypertension 25:343–349CrossRefGoogle Scholar
  23. 23.
    Perez R, Brown D, Katznelson SA, Dubin JA, Üller T, Steven M, Rudich JP, Kaysen GA (2000) Pretransplant systemic inflammation and acute rejection after renal transplantation. Transplantation 69:869–874CrossRefGoogle Scholar
  24. 24.
    Matsui Y, Jia N, Okamoto H, Kon S, Onozuka H, Akino M, Liu L, Morimoto J, Rittling SR, Denhardt D, Kitabatake A, Uede T (2004) Role of osteopontin in cardiac fibrosis and remodelling in angiotensin II-induced cardiac hypertrophy. Hypertension 43:1195–1201CrossRefGoogle Scholar
  25. 25.
    Massin MM, Derkenne B, Tallsund M, Rocour-Brumioul D, Ernould C, Lebrethon MC, Bourguignon JP (1999) Cardiac autonomic dysfunction in diabetic children. Diabetes Care 22:1845–1850CrossRefGoogle Scholar
  26. 26.
    Hanna BD, Nelson MN, White-Traut RC, Silvestri JM, Vasan U, Rey PM, Patel MK, Comiskey (2000) Heart rate variability in preterm brain-injured and very-low-birth-weight infants. Biol Neonate 77:147–155CrossRefGoogle Scholar
  27. 27.
    Hausberg M, Kosch M, Harmelink P, Berenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106:1974–1979CrossRefGoogle Scholar
  28. 28.
    Tory K, Sallay P, Tóth-Heyn P, Szabó A, Szabó A, Tulassay T, Reusz GS (2001) Signs of autonomic neuropathy in childhood uremia. Pediatr Nephrol 16:25–28CrossRefGoogle Scholar
  29. 29.
    Zhang W, Victor RG (2000) Calcineurin inhibitors cause renal afferent activation in rats: a novel mechanism of cyclosporine-induced hypertension. Am J Hypertens 13:999–1004CrossRefGoogle Scholar
  30. 30.
    Matteucci MCH, Giordano U, Calzolari A, Rizzoni G (2002) Total peripheral vascular resistance in pediatric renal transplant patients. Kidney Int 62:1870–1874CrossRefGoogle Scholar
  31. 31.
    Alexander JK (1985) The cardiomyopathy of obesity. Prog Cardiovasc Dis 27:325–333CrossRefGoogle Scholar
  32. 32.
    Koren MJ, Devereux RB, Casale PN, Savage DD, Largagh JH (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114:345–352CrossRefGoogle Scholar
  33. 33.
    Amador N, Encarnación JJ, Rodríguez L, Tello A, López M, Guízar JM (2004) Relationship between left ventricular mass and heart sympathetic activity in male obese subjects. Arch Med Res 35:411–415CrossRefGoogle Scholar
  34. 34.
    Levin A, Thompson CR, Ethier J, Carlisle EJ, Tobe S, Mendelssohn D, Burgess E, Jindal K, Barrett B, Singer J, Djurdjev O (1999) Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis 34:125–134CrossRefGoogle Scholar
  35. 35.
    Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil U, Lorell BH, Riegger GA (1994) Association between a deletion polymorphism of the angiotensin-conventing-enzyme gene and left ventricular hypertrophy. N Engl J Med 330:1634–1638CrossRefGoogle Scholar
  36. 36.
    Covic A, Goldsmith DJ, Covic M (2000) Reduced blood pressure diurnal variability as a risk factor for progressive left ventricular dilatation in hemodialysis patients. Am J Kidney Dis 35:617–623CrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Juan Manuel Guízar-Mendoza
    • 1
  • Norma Amador-Licona
    • 1
    Email author
  • Efrén Edgard Lozada
    • 1
  • Leticia Rodriguez
    • 2
  • María Gutiérrez-Navarro
    • 1
  • Luis Antonio Dubey-Ortega
    • 1
  • José Trejo-Bellido
    • 3
  • José de Jesús Encarnación
    • 2
  • María De la Cruz Ruiz-Jaramillo
    • 3
  1. 1.Unidad de Investigación Epidemiológica UMAE 48 del Instituto Mexicano del Seguro SocialLeónMexico
  2. 2.Departamento de CardiologíaUMAE 1 del Instituto Mexicano del Seguro SocialLeónMexico
  3. 3.Departamento de NefrologíaHospital General Regional, Secretaría de Salud de GuanajuatoLeónMexico

Personalised recommendations