Pediatric Nephrology

, Volume 21, Issue 7, pp 910–916 | Cite as

Genetic kidney diseases in the pediatric population of southern Israel

  • Gal Finer
  • Hanna Shalev
  • Daniel LandauEmail author
Occasional Survey


Genetic kidney diseases (GKDs) are an important and well-known entity in pediatric nephrology. In the past decade advances in genetic and molecular approaches have enabled elucidation of the underlying molecular defects in many of these disorders. Herein we summarize the progress that has been made over the past decade in disclosing the molecular basis of several novel GKDs, which were characterized in our area and include Bartter syndrome type IV, type II Bartter syndrome and transient neonatal hyperkalemia, cystinuria and mental retardation, familial hypomagnesemia with secondary hypocalcemia, infantile nephronophthisis, familial hemolytic uremic syndrome with factor H deficiency, and non-cystic autosomal dominant nephropathy. Retrospective analysis of our data reveals that GKDs are over-represented among the pediatric population in southern Israel. GKDs are seen four-times more often than end-stage renal disease (ESRD) and comprise 38% of all cases of ESRD in our area. This high rate of GKDs is mainly due to the high frequency of consanguineous marriages that prevails in this area. Understanding of the genetic and molecular background of these diseases is a result of a fruitful collaboration between the pediatric nephrologists and scientists, and has a direct implication on the diagnosis and treatment of the affected families.


Bartter syndrome Cystinuria Familial hypomagnesemia Nephronophthisis Familial hemolytic uremic syndrome 



We thank Prof. Ilana Shoham-Vardi, from the Department of Epidemiology at the Faculty of Health Sciences, Ben Gurion University, for her help in the statistical analysis. We also thank Dr. Lewis Reisman for the critical review of the manuscript.


  1. 1.
    Cohen T, Vardi-Saliternik R, Friedlander Y (2004) Consanguinity, intracommunity and intercommunity marriages in a population sample of Israeli Jews. Ann Hum Biol 31:38–48PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Raz AE, Atar M, Rodnay M, Shoham-Vardi I, Carmi R (2003) Between acculturation and ambivalence: knowledge of genetics and attitudes towards genetic testing in a consanguineous Bedouin community. Community Genet 6:88–95PubMedPubMedCentralGoogle Scholar
  3. 3.
    Shoham-Vardi I, Weiner N, Weitzman D, Levcovich A (2004) Termination of pregnancy: attitudes and behavior of women in a traditional society. Prenat Diagn 24:869–875PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Lewando-Hundt G, Shoham-Vardi I, Beckerleg S, Belmaker I, Kassem F, Jaafar AA (2001) Knowledge, action and resistance: the selective use of pre-natal screening among Bedouin women of the Negev. Israel. Soc Sci Med 52:561–569PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S, Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA, Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, Lifton RP (1997) Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet 17:171–178PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Seyberth HW, Rascher W, Schweer H, Kuhl PG, Mehls O, Scharer K (1985) Congenital hypokalemia with hypercalciuria in preterm infants: a hyperprostaglandinuric tubular syndrome different from Bartter syndrome. J Pediatr 107:694–701CrossRefGoogle Scholar
  7. 7.
    Hunter M (2001) Accessory to kidney disease. Nature 414:502–503PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Landau D, Shalev H, Ohaly M, Carmi R (1995) Infantile variant of Bartter syndrome and sensorineural deafness: a new autosomal recessive disorder. Am J Med Genet 59:454–458PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Brennan TM, Landau D, Shalev H, Lamb F, Schutte BC, Walder RY, Mark AL, Carmi R, Sheffield VC (1998) Linkage of infantile Bartter syndrome with sensorineural deafness to chromosome 1p. Am J Hum Genet 62:355–361PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl− channel beta-subunit crucial for renal Cl− reabsorption and inner ear K+ secretion. Nature 414:558–561PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Shalev H, Ohali M, Kachko L, Landau D (2003) The neonatal variant of Bartter syndrome and deafness: preservation of renal function. Pediatrics 112:628–633CrossRefGoogle Scholar
  13. 13.
    Jeck N, Reinalter SC, Henne T, Marg W, Mallmann R, Pasel K, Vollmer M, Klaus G, Leonhardt A, Seyberth HW, Konrad M (2001) Hypokalemic salt-losing tubulopathy with chronic renal failure and sensorineural deafness. Pediatrics 108:E5CrossRefGoogle Scholar
  14. 14.
    Finer G, Shalev H, Birk OS, Galron D, Jeck N, Sinai-Treiman L, Landau D (2003) Transient neonatal hyperkalemia in the antenatal (ROMK defective) Bartter syndrome. J Pediatr 142:318–323PubMedCrossRefGoogle Scholar
  15. 15.
    Arai K, Chrousos GP (1995) Syndromes of glucocorticoid and mineralocorticoid resistance. Steroids 60:173–179PubMedCrossRefGoogle Scholar
  16. 16.
    Shuck ME, Bock JH, Benjamin CW, Tsai TD, Lee KS, Slightom JL, Bienkowski MJ (1994) Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J Biol Chem 269:24261–24270PubMedGoogle Scholar
  17. 17.
    Parvari R, Brodyansky I, Elpeleg O, Moses S, Landau D, Hershkovitz E (2001) A recessive contiguous gene deletion of chromosome 2p16 associated with cystinuria and a mitochondrial disease. Am J Hum Genet 69:869–875PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zaffanello M, Beghini R, Zamboni G, Fanos V (2003) A sporadic case of cystinuria, respiratory chain and growth hormone deficiencies. Pediatr Nephrol 18:846–847PubMedCrossRefGoogle Scholar
  19. 19.
    Oizumi J, Shaw KN, Giudici TA, Carter M, Donnell GN, Ng WG (1983) Neonatal pyruvate carboxylase deficiency with renal tubular acidosis and cystinuria. J Inherit Metab Dis 6:89–94PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Shalev H, Phillip M, Galil A, Carmi R, Landau D (1998) Clinical presentation and outcome in primary familial hypomagnesemia. Arch Dis Child 78:127–130PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Walder RY, Shalev H, Brennan TM, Carmi R, Elbedour K, Scott DA, Hanauer A, Mark AL, Patil S, Stone EM, Sheffield VC (1997) Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum Mol Genet 6:1491–1497PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegger S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet 31:166–170PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Voets T, Nilius B, Hoefs S, van der Kemp AW, Droogmans G, Bindels RJ, Hoenderop JG (2004) TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, Wolf MT, Sasmaz G, Trauer U, Reinhardt R, Sudbrak R, Antignac C, Gretz N, Walz G, Schermer B, Benzing T, Hildebrandt F, Omran H (2003) Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34:455–459PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O’Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F (2005) Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior–Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37:282–288PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Haider N, Carmi R, Shalev H, Sheffield V, Landau D (1998) A Bedouin kindred with infantile nephronophtisis demonstrates linkage to chromosome 9 by homozigosity mapping. Am J Hum Genet 63:1404–1410PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Otto EA, Schermer B, Obara T, O’Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34:413–420PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ohali M, Shalev H, Schlesinger M, Katz Y, Kachko L, Carmi R, Sofer S, Landau D (1998) Hypocomplementemic autosomal recessive hemolytic uremic syndrome with decreased factor H. Pediatr Nephrol 12:619–624PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Thompson RA, Winterborn MH (1981) Hypocomplementaemia due to a genetic deficiency of beta 1H globulin. Clin Exp Immunol 46:110–119PubMedPubMedCentralGoogle Scholar
  31. 31.
    Roodhooft AM, McLean RH, Elst E, Van Acker KJ (1990) Recurrent haemolytic uraemic syndrome and acquired hypomorphic variant of the third component of complement. Pediatr Nephrol 4:597–599PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Pichette V, Querin S, Schurch W, Brun G, Lehner-Netsch G, Delage JM (1994) Familial hemolytic-uremic syndrome and homozygous factor H deficiency. Am J Kidney Dis 24:936–941PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zipfel PF, Jokiranta TS, Hellwage J, Koistinen V, Meri S (1999) The factor H protein family. Immunopharmacology 42:53–60PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kondo C, Mizuno M, Nishikawa K, Yusawa Y, Hotta N, Matsuo S (2001) The role of C5a in the development of thrombotic glomerulonephritis in rats. Clin Exp Immunol 124:323–329PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Manuelian T, Hellwage J, Meri S, Caprioli J, Noris M, Heinen S, Jozsi M, Neumann HP, Remuzzi G, Zipfel PF (2003) Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest 111:1181–1190PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, Botto M (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 31:424–428PubMedCrossRefGoogle Scholar
  37. 37.
    Jansen JH, Hogasen K, Harboe M, Hovig T (1998) In situ complement activation in porcine membranoproliferative glomerulonephritis type II. Kidney Int 53:331–549PubMedCrossRefGoogle Scholar
  38. 38.
    Ying L, Katz Y, Schlesinger M, Carmi R, Shalev H, Haider N, Beck G, Sheffield VC, Landau D (1999) Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome. Am J Hum Genet 65:1538–1546PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Landau D, Shalev H, Levy-Finer G, Polonsky A, Segev Y, Katchko L (2001) Familial hemolytic uremic syndrome associated with complement factor H deficiency. J Pediatr 138:412–417CrossRefGoogle Scholar
  40. 40.
    Landau D, Shalev H, Pinsk V, Levy-Hevroni R, Segev Y, Haim A, Yahalom V, Schlezinger M, Levy Y (2001) Factor H deficient familial hemolytic uremic syndrome (FHD-HUS): experience with plasma therapy (abstract). The Annual Meeting of the Israeli Society of Clinical Pediatrics. Tel AvivGoogle Scholar
  41. 41.
    Auranen M, Ala-Mello S, Turunen JA, Jarvela I (2001) Further evidence for linkage of autosomal-dominant medullary cystic kidney disease on chromosome 1q21. Kidney Int 60:1225–1232PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hart TC, Gorry MC, Hart PS, Woodard AS, Shihabi Z, Sandhu J, Shirts B, Xu L, Zhu H, Barmada MM, Bleyer AJ (2002) Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet 39:882–892PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Parvari R, Shnaider A, Basok A, Katchko L, Borochovich Z, Kanis A, Landau D (2001) Clinical and genetic characterization of an autosomal dominant nephropathy. Am J Med Genet 99:204–209PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    United States Renal Data System:
  45. 45.
    Foreman JW, Chan JC (1988) Chronic renal failure in infants and children. J Pediatr 113:793–800PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  1. 1.Department of Pediatrics, Soroka University Medical CenterBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations