Pediatric Nephrology

, Volume 21, Issue 8, pp 1075–1081 | Cite as

Primary hyperoxaluria type 1: still challenging!

  • Pierre Cochat
  • Aurélia Liutkus
  • Sonia Fargue
  • Odile Basmaison
  • Bruno Ranchin
  • Marie-Odile Rolland
Review

Abstract

Primary hyperoxaluria type 1, the most common form of primary hyperoxaluria, is an autosomal recessive disorder caused by a deficiency of the liver-specific enzyme alanine: glyoxylate aminotransferase (AGT). This results in increased synthesis and subsequent urinary excretion of the metabolic end product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. As glomerular filtration rate (GFR) decreases due to progressive renal involvement, oxalate accumulates and results in systemic oxalosis. Diagnosis is still often delayed. It may be established on the basis of clinical and sonographic findings, urinary oxalate ± glycolate assessment, DNA analysis and, sometimes, direct AGT activity measurement in liver biopsy tissue. The initiation of conservative measures, based on hydration, citrate and/or phosphate, and pyridoxine, in responsive cases at an early stage to minimize oxalate crystal formation will help to maintain renal function in compliant subjects. Patients with established urolithiasis may benefit from extracorporeal shock-wave lithotripsy and/or JJ stent insertion. Correction of the enzyme defect by liver transplantation should be planned, before systemic oxalosis develops, to optimize outcomes and may be either sequential (biochemical benefit) or simultaneous (immunological benefit) liver–kidney transplantation, depending on facilities and access to cadaveric or living donors. Aggressive dialysis therapies are required to avoid progressive oxalate deposition in established end-stage renal disease (ESRD), and minimization of the time on dialysis will improve both the patient’s quality of life and survival.

Keywords

Primary hyperoxaluria type 1 Alanine:glyoxylate aminotransferase Oxalate Urolithiasis Dialysis Liver transplantation Combined liver–kidney transplantation Oxalosis 

References

  1. 1.
    Cochat P, Deloraine A, Rotily M, Olive F, Liponski I, Deries N, on behalf of the Société de Néphrologie and the Société de Néphrologie Pédiatrique (1995) Epidemiology of primary hyperoxaluria type 1. Nephrol Dial Transplant 10 [Suppl 8]:3–7PubMedGoogle Scholar
  2. 2.
    Lieske JC, Monico CG, Holmes WS, Bergstralh EJ, Slezak JM, Rohlinger AL, Olson JB, Milliner DS (2005) International registry for primary hyperoxaluria. Am J Nephrol 25:290–296PubMedCrossRefGoogle Scholar
  3. 3.
    Al-Eisa AA, Samhan M, Naseef M (2004) End-stage renal disease in Kuwaiti children: an 8-year experience. Transplant Proc 36:1788–1791PubMedCrossRefGoogle Scholar
  4. 4.
    Kamoun A, Lakhoua R (1996) End-stage renal disease of the Tunisian child: epidemiology, etiologies and outcome. Pediatr Nephrol 10:479–482PubMedCrossRefGoogle Scholar
  5. 5.
    Cochat P, Koch Nogueira PC, Mahmoud AM, Jamieson NV, Scheinman JI, Rolland MO (1999) Primary hyperoxaluria in infants: medical, ethical and economic issues. J Pediatr 135:746–750PubMedCrossRefGoogle Scholar
  6. 6.
    Millan MT, Berquist WE, So SK, Sarwal MM, Wayman KI, Cox KL, Filler G, Salvatierra O Jr, Esquivel CO (2003) One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation 76:1458–1463PubMedCrossRefGoogle Scholar
  7. 7.
    Cochat P, Rolland MO (2005) The primary hyperoxalurias. In: Davison AM, Cameron JS, Grünfeld JP, Ponticelli C, Ritz E, Winearls CG, van Ypersele C (eds) Oxford textbook of clinical nephrology (3rd edn). Oxford University Press, Oxford, pp 2374–2380Google Scholar
  8. 8.
    Danpure CJ (2005) Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 25:303–310PubMedCrossRefGoogle Scholar
  9. 9.
    Daudon M, Jungers P (2004) Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol 98:31–36CrossRefGoogle Scholar
  10. 10.
    Wong PN, Law ELK, Tong GMW, Mak SK, Lo KY, Wong AKM (2003) Diagnosis of primary hyperoxaluria type 1 by determination of peritoneal dialysate glycolic acid using standard organic-acids analysis method. Perit Dial Int 23:S210–S213Google Scholar
  11. 11.
    Coulter-Mackie MB, Rumsby G (2004) Genetic heterogeneity in primary hyperoxaluria type 1: impact on diagnosis. Mol Genet Metab 83:38–46PubMedCrossRefGoogle Scholar
  12. 12.
    Amoroso A, Pirulli D, Florian F, Puzzer D, Boniotto M, Crovella S, Zezlina S, Spano A, Mazzola G, Savoldi S, Ferrettini C, Berutti S, Petrarulo M (2001) AGXT gene mutations and their influence on clinical heterogeneity of type 1 primary hyperoxaluria. J Am Soc Nephrol 12:2072–2079PubMedGoogle Scholar
  13. 13.
    Marangella M, Vitale C, Petrarulo M, Tricerri A, Cerelli E, Cadario A, Barbos MP, Linari F (1995) Bony content of oxalate in patients with primary hyperoxaluria or oxalosis-unrelated renal failure. Kidney Int 48:182–187PubMedCrossRefGoogle Scholar
  14. 14.
    Danpure CJ, Rumsby G (1995) Enzymological and molecular genetics of primary hyperoxaluria type 1. Consequences for clinical management. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, pp 189–205Google Scholar
  15. 15.
    Leumann E, Hoppe B (2005) Primary hyperoxaluria type 1: is genotyping clinically helpful? Pediatr Nephrol 20:555–557PubMedCrossRefGoogle Scholar
  16. 16.
    Coulter-Mackie MB, Applegarth D, Toone JR, Henderson H (2004) The major allele of the alanine:glyoxylate aminotransferase gene: seven novel mutations causing primary hyperoxaluria. Mol Genet Metab 82:64–68PubMedCrossRefGoogle Scholar
  17. 17.
    Danpure CJ (2004) Molecular aetiology of primary hyperoxaluria type 1. Nephron Exp Nephrol 98:e39–e44PubMedCrossRefGoogle Scholar
  18. 18.
    Lumb MJ, Danpure CJ (2000) Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem 275:36415–36422PubMedCrossRefGoogle Scholar
  19. 19.
    Monico CG, Persson M, Ford GC, Rumsby G, Milliner DS (2002) Potential mechanisms of marked hyperoxaluria not due to primary hyperoxaluria I or II. Kidney Int 62:392–400PubMedCrossRefGoogle Scholar
  20. 20.
    Nogueira PC, Vuong TS, Bouton O, Maillard A, Marchand M, Rolland MO, Cochat P, Bozon D (2000) Partial deletion of the AGXT gene (EX1_EX7del): a new genotype in hyperoxaluria type 1. Hum Mutat 15:384–385PubMedCrossRefGoogle Scholar
  21. 21.
    Rumsby G, Williams E, Coulter-Mackie M (2004) Evaluation of mutation screening as a first line test for the diagnosis of primary hyperoxaluria. Kidney Int 66:959–96323PubMedCrossRefGoogle Scholar
  22. 22.
    Basmaison O, Rolland MO, Cochat P, Bozon D (2000) Identification of 5 novel mutations in the AGXT gene. Hum Mutat 15:577PubMedCrossRefGoogle Scholar
  23. 23.
    van Woerden CS, Groothoff JW, Wijburg FA, Annink C, Wanders RJ, Waterham HR (2004) Clinical implications of mutation analysis in primary hyperoxaluria type 1. Kidney Int 66:746–752PubMedCrossRefGoogle Scholar
  24. 24.
    Monico CG, Rossetti S, Olson JB, Milliner DS (2005) Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 67:1704–1709PubMedCrossRefGoogle Scholar
  25. 25.
    Coulter-Mackie MB (2005) Preliminary evidence for ethnic differences in primary hyperoxaluria type 1 genotype. Am J Nephrol 25:264–268PubMedCrossRefGoogle Scholar
  26. 26.
    von Schnakenburg C, Hulton SA, Milford DV, Roper HP, Rumsby G (1998) Variable presentation of primary hyperoxaluria type 1 in 2 patients homozygous for a novel combined deletion and insertion mutation in exon 8 of the AGXT gene. Nephron 78:485–488CrossRefGoogle Scholar
  27. 27.
    Leumann E, Hoppe B (2001) The primary hyperoxalurias. J Am Soc Nephrol 12:1986–1993PubMedGoogle Scholar
  28. 28.
    Milliner DS, Wilson DM, Smith LH (2001) Phenotypic expression of primary hyperoxaluria: comparative features of types I and II. Kidney Int 2001 59:31–36CrossRefGoogle Scholar
  29. 29.
    Marangella M, Petrarulo M, Cosseddu D, Vitale C, Linari F (1992) Oxalate balance studies in patients on hemodialysis for type I primary hyperoxaluria. Am J Kidney Dis 19:546–553PubMedGoogle Scholar
  30. 30.
    Hoppe B, Kemper MJ, Bokenkamp A, Portale A, Cohn R, Langman C (1999) Plasma calcium oxalate super saturation in children with primary hyperoxaluria and end-stage renal failure. Kidney Int 56:268–274PubMedCrossRefGoogle Scholar
  31. 31.
    Yamauchi T, Quillard M, Takahasi S, Nguyen-Khoa M (2001) Oxalate removal by daily dialysis in a patient with primary hyperoxaluria type 1. Nephrol Dial Transplant 16:2407–2411PubMedCrossRefGoogle Scholar
  32. 32.
    Scheinman JI, Najarian JS, Mauer SM (1984) Successful strategies for renal transplantation in primary oxalosis. Kidney Int 25:804–811PubMedCrossRefGoogle Scholar
  33. 33.
    Behnke B, Kemper MJ, Kruse HP, Müller-Wiefel DE (2001) Bone mineral density in children with primary hyperoxaluria type 1. Nephrol Dial Transplant 16:2236–2239PubMedCrossRefGoogle Scholar
  34. 34.
    Cibrik DM, Kaplan B, Arndorfer JA, Meier-Kriesche HU (2002) Renal allograft survival in patients with oxalosis. Transplantation 74:707–710PubMedCrossRefGoogle Scholar
  35. 35.
    Jamieson NV (2005) A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984–2004. Am J Nephrol 25:282–289PubMedCrossRefGoogle Scholar
  36. 36.
    Cochat P, Schärer K (1993) Should liver transplantation be performed before advanced renal insufficiency in primary hyperoxaluria type 1? Pediatr Nephrol 7:212–218PubMedCrossRefGoogle Scholar
  37. 37.
    Kemper MJ (2005) The role of preemptive liver transplantation in primary hyperoxaluria type 1. Urol Res 33:376–379PubMedCrossRefGoogle Scholar
  38. 38.
    Gagnadoux MF, Lacaille F, Niaudet P, Revillon Y, Jouvet P, Jan D, Guest G, Charbit M, Broyer M (2001) Long term results of liver–kidney transplantation in children with primary hyperoxaluria. Pediatr Nephrol 16:946–950PubMedCrossRefGoogle Scholar
  39. 39.
    Ellis SR, Hulton SA, McKiernan PJ, de Ville de Goyet J, Kelly DA (2001) Combined liver–kidney transplantation for primary hyperoxaluria in young children. Nephrol Dial Transplant 16:348–354PubMedCrossRefGoogle Scholar
  40. 40.
    Sidhu H, Hoppe B, Hesse A, Tenbrock K, Bromme S, Rietschel E, Peck AB (1998) Absence of Oxalobacter formigenes in cystic fibrosis patients: a risk factor for hyperoxaluria. Lancet 352:1026–1029PubMedCrossRefGoogle Scholar
  41. 41.
    Chetyrkin SV, Kim D, Belmont JM, Scheinman JI, Hudson BG, Voziyan PA (2004) Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Kidney Int 67:53–60CrossRefGoogle Scholar
  42. 42.
    Danpure CJ (2005) Primary hyperoxaluria: from gene defects to designer drugs? Nephrol Dial Transplant 20:1525–1529PubMedCrossRefGoogle Scholar
  43. 43.
    Koul S, Johnson T, Pramanik S, Koul H (2005) Cellular transfection to deliver alanine-glyoxylate aminotransferase to hepatocytes: a rational gene therapy for primary hyperoxaluria-1 (PH-1). Am J Nephrol 25:176–182PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Pierre Cochat
    • 1
    • 2
    • 4
  • Aurélia Liutkus
    • 1
  • Sonia Fargue
    • 1
  • Odile Basmaison
    • 1
  • Bruno Ranchin
    • 1
  • Marie-Odile Rolland
    • 1
    • 3
  1. 1.Centre de Référence des Maladies Rénales HéréditairesHôpital Edouard-HerriotLyonFrance
  2. 2.Laboratoire de Physiopathologie Métabolique et Rénale, Inserm U499Faculté LaennecLyonFrance
  3. 3.Laboratoire de biochimie pédiatriqueHôpital DebrousseLyonFrance
  4. 4.Département de pédiatrieHôpital Edouard-HerriotLyonFrance

Personalised recommendations