Pediatric Nephrology

, Volume 21, Issue 6, pp 800–806 | Cite as

Accumulation of poly(ADP-ribose) polymerase inhibitors in children with chronic renal failure

  • Ewa M. Slominska
  • Katarzyna Kowalik
  • Ryszard T. Smolenski
  • Marek Szolkiewicz
  • Przemyslaw Rutkowski
  • Boleslaw Rutkowski
  • Julian SwierczynskiEmail author
Original Article


Nicotinamide, N-methyl-2-pyridone-5-carboxamide (Met2PY) and N-methyl-4-pyridone-3-carboxamide (Met4PY) are biological metabolites of the intracellular coenzyme nicotinamide adenine dinucleotide (NAD) that can potentially inhibit poly(ADP-ribose) polymerase 1 (PARP-1; DNA repair enzyme). Our research was aimed at establishing whether chronic renal failure (CRF) in children leads to the elevation of plasma NAD metabolites sufficient to inhibit PARP-1 activity. Nicotinamide, Met2PY and Met4PY plasma and erythrocyte concentrations were measured in 25 children with CRF and in 19 healthy children. The effect of these NAD metabolites on PARP-1 activity was studied in vitro. We found that plasma concentration of all NAD metabolites (nicotinamide, Met2PY, Met4PY) in children with CRF could reach the concentration of 2, 30 and 10 μM as compared to 0.2, 1 and 0.5 μM, respectively, in healthy children. The concentration of nicotinamide metabolites correlated positively with plasma creatinine concentration and negatively with creatinine clearance in children with CRF. We found that Met2PY, Met4PY and nicotinamide inhibited in vitro PARP-1 activity with IC50 values of 2.1, 0.18 and 0.12 mM, respectively. Our data indicate that NAD metabolites accumulate in plasma of children with CRF and their combined effect could lead to the inhibition of PARP-1 activity. NAD metabolites could be particularly harmful in children due to higher DNA turnover than in adults.


PARP-1 NAD metabolism Nicotinamide Met2PY Met4PY Chronic renal failure 



This work was supported by grants from the Ministry of Science and Information Society Technologies of Poland (3 PO5B 118 25 and PBZ-KBN-101/T09/2003/17). Part of this paper was presented at the International Congress on Uremic Toxicity, held in Würzburg (13–16 September 2002) and published in abstract form.


  1. 1.
    Burkle A (2001) Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 23:795–806CrossRefGoogle Scholar
  2. 2.
    D’Amours D, Desnoyers S, S’Silva I, Poirier GG (1999) Poly(ADP-ribosyl) reactions in the regulation of nuclear functions. Biochem J 342:249–268CrossRefGoogle Scholar
  3. 3.
    Jacobson MK, Jacobson EL (1999) Discovering new ADP-ribose polymer cycles: protecting the genome and more. Trends Biochem Sci 24:415–417CrossRefGoogle Scholar
  4. 4.
    Shibata K, Toda S (1989) Correlation between niacin equivalent intake and urinary excretion of its metabolites, N’-methyl nicotinamide, N’-methyl-2-pyridone-5-carboxamide and N’-methyl-4-pyridone-3-carboxamide in humans consuming a self-selected food. Am J Clin Nutr 50:114–119CrossRefGoogle Scholar
  5. 5.
    Stratford MR, Dennis MF (1992) High-performance liquid chromatographic determination of nicotinamide and its metabolites in human and murine plasma and urine. J Chromatogr 582:145–151CrossRefGoogle Scholar
  6. 6.
    Slominska EM, Smolenski RT, Osborne F, Swierczynski J, Yacoub MH (2005) The effect of N-methyl-2-pyridone-5-carboxamide—a nicotinamide catabolite on poly ADP-rybosylation and oxidative stress injury in endothelial cells. Nucleosides Nucleotides Nucleic Acids 24:259–262PubMedGoogle Scholar
  7. 7.
    Barlow GB, Sutton JL, Wilkinson AW (1977) Metabolism of nicotinic acid in children with burns and scalds. Clin Chim Acta 75:337–342CrossRefGoogle Scholar
  8. 8.
    Cazullo CL, Sacchetti E, Smeraldi E (1976) N-Methylnicotinamide excretion and affective disorders. Psychol Med 6:256–270Google Scholar
  9. 9.
    Pumpo R, Sarnelli G, Spinella A, Budillon G, Cuomo R (2001) The metabolism of nicotinamide in human liver cirrhosis: a study on N-methylnicotinamide and 2-pyridone-5-carboxamide production. Am J Gastroenterol 96:1183–1187CrossRefGoogle Scholar
  10. 10.
    Aoyama K, Matsubara K, Okada K, Fukushima S, Shimizu K, Yamaguchi S, Uezono T, Satomi M, Hayase N, Ohta S, Shiono H, Kobayashi S (2000) N-Methylation ability for azaheterocyclic amines is higher in Parkinson’s disease: nicotinamide loading test. J Neural Transm 107:985–995CrossRefGoogle Scholar
  11. 11.
    Slominska EM, Smolenski RT, Szolkiewicz M, Leaver N, Rutkowski B, Simmonds HA, Swierczynski J (2002) Accumulation of plasma N-methyl-2-pyridone-5-carboxamide in patients with chronic renal failure. Mol Cell Biochem 231:83–88CrossRefGoogle Scholar
  12. 12.
    Carrey EA, Smolenski RT, Edbury SM, Laurence A, Marinaki AM, Duley JA, Zhu L, Goldsmith DJ, Simmonds HA (2003) Origin and characteristic of an unusual pyridine nucleotide accumulating in erythrocytes: positive correlation with degree of renal failure. Clin Chim Acta 335:117–129CrossRefGoogle Scholar
  13. 13.
    Vidotto C, Fousert D, Akkerman M, Griesmacher A, Muller MM (2003) Purine and pyrimidine metabolites in children’s urine. Clin Chim Acta 335:27–32CrossRefGoogle Scholar
  14. 14.
    de Jong JW, Keijzer E, Huizer T, Schoutsen B (1990) Ischemic nucleotide breakdown increases during cardiac development due to drop in adenosine anabolism/catabolism ratio. J Mol Cell Cardiol 22:1065–1070CrossRefGoogle Scholar
  15. 15.
    Rutkowski B, Slominska E, Szolkiewicz M, Smolenski RT, Striley C, Rutkowski P, Swierczynski J (2003) N-methyl-2-pyridone-5-carboxamide: a novel uremic toxin? Kidney Int 63(Suppl 84):S19–S21CrossRefGoogle Scholar
  16. 16.
    Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878CrossRefGoogle Scholar
  17. 17.
    Smolenski RT, Lachno DR, Ledingham SJ, Yacoub MH (1990) Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantation. J Chromatogr 527:414–420CrossRefGoogle Scholar
  18. 18.
    Virag L, Szabo C (2001) Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J 15:99–107CrossRefGoogle Scholar
  19. 19.
    Okamoto H, Ishikawa A, Yoshitake Y, Kodama N, Nishimuta M, Fukuwatari T, Shibata K (2003) Diurnal variations in human urinary excretion of nicotinamide catabolites: effects of stress on the metabolism of nicotinamide. Am J Clin Nutr 77:406–410CrossRefGoogle Scholar
  20. 20.
    Morena M, Cristol JP, Senecal L, Leray-Moragues H, Krieter D, Canaud B (2002) Oxidative stress in hemodialysis patients: is NADH oxidase complex the culprit? Kidney Int 61:S109–S114CrossRefGoogle Scholar
  21. 21.
    Hasselwander O, Young I (1998) Oxidative stress in chronic renal failure. Free Radic Res 29:1–11CrossRefGoogle Scholar
  22. 22.
    Kupper JH, Muller M, Jacobson MK, Tatsumi-Miyajima J, Coyle DL, Jacobson EL, Burkle A (1995) Trans-dominant inhibition of poly(AD-ribosyl)ation sensitizes cells against γ-irradiation and N-methyl-N-nitro-N-nitrosoguanidine but does not limit DNA replication of a polyoma virus replicon. Mol Cell Biol 15:3154–3163CrossRefGoogle Scholar
  23. 23.
    Ahnstrom G, Ljungman M (1988) Effects of 3-aminobemzamide on the rejoining of DNA-strand breaks in mammalian cells exposed to methyl methanesulphonate: role of poly(ADP-ribose) polymerase. Mutat Res 194:17–22PubMedGoogle Scholar
  24. 24.
    Burkle A (2001) Poly(ADP-ribosyl)ation, a DNA damage-driven protein modification and regulator of genomic instability. Cancer Lett 163:1–5CrossRefGoogle Scholar
  25. 25.
    Kurz P, Kohler H, Meuer S, Hutteroth T, Meyer zum Buschenfelde K (1986) Impaired cellular immune response in chronic renal failure: evidence for a T cell defect. Kidney Int 29:1209–1214CrossRefGoogle Scholar
  26. 26.
    Maisonneuve P, Agodoa L, Gellert R, Stewart JH, Buccianti G, Lowenfels AB, Wolfe RA, Jones E, Disney AP, Briggs D, McCredie M, Boyle P (1999) Cancer in patients on dialysis for end-stage renal disease: an international collaborative study. Lancet 354:93–99CrossRefGoogle Scholar
  27. 27.
    Cochrane CG (1991) Mechanism of oxidant injury of cell. Mol Aspects Med 12:137–147CrossRefGoogle Scholar
  28. 28.
    Szabo C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–298CrossRefGoogle Scholar
  29. 29.
    Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96:13978–13982CrossRefGoogle Scholar
  30. 30.
    Martin DR, Lewington AJ, Hammerman MR, Padanilam BJ (2000) Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834–R1840CrossRefGoogle Scholar
  31. 31.
    Klein HH, Schaper J, Puschmann S, Nienaber C, Kreuzer H, Schaper W (1981) Loss of canine myocardial nicotinamide adenine dinucleotides determines the transition from reversible to irreversible ischemic damage of myocardial cells. Basic Res Cardiol 76:612–621CrossRefGoogle Scholar
  32. 32.
    Goodwin POM, Lewis PJ, Davies MI, Skidmore CJ, Shall S (1978) The effect of gamma radiation and neocarzinostatin on NAD and ATP levels in mouse leukemia cells. Biochim Biophys Acta 543:576–582CrossRefGoogle Scholar
  33. 33.
    Skidmore CJ, Davies MI, Goodwin PM, Halldorsson H, Lewis PJ, Shall S, Zia’ee AA (1979) The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by gamma radiation and N-methyl-N-nitrosourea. Eur J Biochem 101:135–142CrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Ewa M. Slominska
    • 1
  • Katarzyna Kowalik
    • 2
  • Ryszard T. Smolenski
    • 1
  • Marek Szolkiewicz
    • 3
  • Przemyslaw Rutkowski
    • 3
  • Boleslaw Rutkowski
    • 3
  • Julian Swierczynski
    • 1
    Email author
  1. 1.Department of BiochemistryMedical University of GdanskGdanskPoland
  2. 2.Department of Pediatric NephrologyMedical University of GdanskGdanskPoland
  3. 3.Department of Nephrology, Transplantology and Internal MedicineMedical University of GdanskGdanskPoland

Personalised recommendations