Advertisement

Pediatric Nephrology

, Volume 21, Issue 6, pp 856–863 | Cite as

Kidney NGAL is a novel early marker of acute injury following transplantation

  • Jaya Mishra
  • Qing Ma
  • Caitlin Kelly
  • Mark Mitsnefes
  • Kiyoshi Mori
  • Jonathan Barasch
  • Prasad DevarajanEmail author
Original Article

Abstract

Acute kidney injury secondary to ischemia–reperfusion in renal allografts often results in delayed graft function. We tested the hypothesis that expression of neutrophil gelatinase-associated lipocalin (NGAL) is an early marker of acute kidney injury following transplantation. Sections from paraffin-embedded protocol biopsy specimens obtained at approximately one hour of reperfusion after transplantation of 13 cadaveric (CAD) and 12 living-related (LRD) renal allografts were examined by immunohistochemistry for expression of NGAL. The staining intensity was correlated with cold ischemia time, peak post-operative serum creatinine, and dialysis requirement. There were no differences between the LRD and CAD groups in age, gender or preoperative serum creatinine. Using a scoring system of 0 (no staining) to 3 (most intense staining), NGAL expression was significantly increased in CAD specimens (2.3±0.8 versus 0.8±0.7 in LRD, p<0.001). There was a strong correlation between NGAL staining intensity and cold ischemia time (R=0.87, p<0.001). Importantly, NGAL staining in these early CAD biopsies was strongly correlated with peak postoperative serum creatinine, which occurred days later (R=0.86, p<0.001). Four patients developed delayed graft function requiring dialysis during the first week posttransplantation; all of these patients displayed the most intense NGAL staining in their first protocol biopsies. We conclude that NGAL staining intensity in early protocol biopsies represents a novel predictive biomarker of acute kidney injury following transplantation.

Keywords

Acute renal failure Delayed graft function Biomarkers Lipocalins Protocol biopsy 

Notes

Acknowledgements

Dr. Devarajan is supported by grants from the NIH/NIDDK (RO1-DK53289, P50-DK52612, R21-DK070163), a Grant-in-Aid from the American Heart Association Ohio Valley Affiliate, and a Translational Research Initiative Grant from Cincinnati Children’s Hospital Medical Center. Dr. Barasch is supported by grants from the NIH/NIDDK (RO1-DK55388, RO1 DK-58872) and a Research Grant from the March of Dimes Foundation.

References

  1. 1.
    Star RA (1998) Treatment of acute renal failure. Kidney Int 54:1817–1831PubMedCrossRefGoogle Scholar
  2. 2.
    Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114:5–14PubMedGoogle Scholar
  3. 3.
    Lamiere N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430Google Scholar
  4. 4.
    Molitoris BA (2003) Transitioning to therapy in ischemic acute renal failure. J Am Soc Nephrol 14:265–267PubMedCrossRefGoogle Scholar
  5. 5.
    Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14:2199–2210PubMedCrossRefGoogle Scholar
  6. 6.
    Siegel NJ, Shah SV (2003) Acute renal failure: directions for the next decade. J Am Soc Nephrol 14:2176–2177PubMedCrossRefGoogle Scholar
  7. 7.
    Devarajan P (2005) Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr 17:193–199Google Scholar
  8. 8.
    Schrier RW (2004) Need to intervene in established acute renal failure. J Am Soc Nephrol 15:2756–2758PubMedCrossRefGoogle Scholar
  9. 9.
    Hewitt SM, Dear J, Star RA (2004) Discovery of protein biomarkers for renal diseases. J Am Soc Nephrol 15:1677–1689PubMedCrossRefGoogle Scholar
  10. 10.
    Herget-Rosenthal S, Marggraf G, Hüsing J, Goring F, Pietruck F, Janssen O, Phillip T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66:1115–1122PubMedCrossRefGoogle Scholar
  11. 11.
    Rabb H (2003) Novel urinary markers for early diagnosis of ARF. Am J Kidney Dis 42:599–600PubMedCrossRefGoogle Scholar
  12. 12.
    Bellomo R, Kellum JA, Ronco C (2004) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37PubMedCrossRefGoogle Scholar
  13. 13.
    Perico N, Cattaneo D, Sayegh MH, Remuzzi G (2004) Delayed graft function in kidney transplantation. Lancet 364:1814–1827PubMedCrossRefGoogle Scholar
  14. 14.
    Ojo AO, Wolfe RA, Held PJ, Port FK, Schmouder RL (1997) Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 63:968–974PubMedCrossRefGoogle Scholar
  15. 15.
    Koning OH, Ploeg RJ, van Bockel H, Groenewegen M, van der Woude FJ, Persijn GG, Hermans J (1997) Risk factors for delayed graft function in cadaveric kidney transplantation: a prospective study of renal function and graft survival after preservation with University of Wisconsin solution in multi-organ donors. Transplantation 63:1620–1628PubMedCrossRefGoogle Scholar
  16. 16.
    Jacobs SC, Cho E, Foster C, Liao P, Bartlett ST (2004) Laparoscopic donor nephrectomy: the University of Maryland 6-year experience. J Urol 171:47–51PubMedCrossRefGoogle Scholar
  17. 17.
    Lu CY, Penfield JG, Kielar ML, Vasquez MA, Jeyarajah DR (1999) Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int 55:2157–2168PubMedCrossRefGoogle Scholar
  18. 18.
    Sayegh MH (1999) Why do we reject a graft? Role of indirect allorecognition in graft rejection. Kidney Int 65:1967–1979CrossRefGoogle Scholar
  19. 19.
    Boom H, Mallat MJ, de Fijter JW, Zwinderman AH, Paul LC (2000) Delayed graft function influences renal function, but not survival. Kidney Int 58:859–866PubMedCrossRefGoogle Scholar
  20. 20.
    Giral-Classe M, Hourmant M, Cantarovich D, Dantal J, Blancho G, Daguin P, Ancelet D, Soulillou JP (1998) Delayed graft function of more than six days strongly decreases long-term survival of transplanted kidneys. Kidney Int 54:972–978PubMedCrossRefGoogle Scholar
  21. 21.
    Shoskes DA, Cecka M (1998) Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 66:1697–1701PubMedCrossRefGoogle Scholar
  22. 22.
    Troppman C, Gruessner AC, Gillingham KJ, Sutherland DE, Matas AJ, Gruessner RW (1999) Impact of delayed graft function on long-term graft survival after solid organ transplantation. Transplant Proc 31:1290–1292CrossRefGoogle Scholar
  23. 23.
    Woo YM, Jardine AG, Clark AF, MacGregor MS, Bowman AW, Macpherson SG, Briggs JD, Junor BJ, McMillan MA, Rodger RS (1999) Early graft function and patient survival following cadaveric renal transplantation. Kidney Int 55:692–699PubMedCrossRefGoogle Scholar
  24. 24.
    Tejani AH, Sullivan EK, Alexander SR, Fine RN, Harmon WE, Kohaut EC (1999) Predictive factors for delayed graft function (DGF) and its impact on renal graft survival in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant 3:293–300PubMedCrossRefGoogle Scholar
  25. 25.
    Prommool S, Jhangri GS, Cockfield SM, Halloran PF (2000) Time dependency of factors affecting renal allograft survival. J Am Soc Nephrol 11:565–573PubMedGoogle Scholar
  26. 26.
    Halloran PF, Hunsicker LG (2001) Delayed graft function: state of the art, Nov 10–11, 2000. Summit meeting, Scottsdale, Arizona, USA. Am J Transplant 1:115–120PubMedGoogle Scholar
  27. 27.
    Salahudeen AK, Haider N, May W (2004) Cold ischemia and the reduced long-term survival of cadaveric renal allografts. Kidney Int 65:713–718PubMedCrossRefGoogle Scholar
  28. 28.
    Irish WD, McCollum DA, Tesi RJ, Owen AB, Brennan DC, Bailly JE, Schnitzler MA (2003) Nomogram for predicting the likelihood of delayed graft function in adult cadaveric renal transplant recipients. J Am Soc Nephrol 14:2967–2974PubMedCrossRefGoogle Scholar
  29. 29.
    Brier ME, Ray PC, Klein JB (2003) Prediction of delayed renal allograft function using an artificial neural network. Nephrol Dial Transplant 18:2655–2659PubMedCrossRefGoogle Scholar
  30. 30.
    Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P (2003) Differential gene expression following early renal ischemia–reperfusion. Kidney Int 63:1714–1724Google Scholar
  31. 31.
    Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P (2003) Identification of NGAL as a novel urinary biomarker for ischemic injury. J Am Soc Nephrol 4:2534–2543CrossRefGoogle Scholar
  32. 32.
    Devarajan P, Mishra J, Supavekin S, Patterson LT, Potter SS (2003) Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery and novel therapeutics. Mol Genet Metab 80:365–376PubMedCrossRefGoogle Scholar
  33. 33.
    Oberbauer R, Rohrmoser M, Regele H, Mulhbacher F, Mayer G (1999) Apoptosis of tubular epithelial cells in donor kidney biopsies predicts early renal allograft function. J Am Soc Nephrol 10:2006–2013PubMedGoogle Scholar
  34. 34.
    Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ, Tellis V, Devarajan P (2003) Activation of mitochondrial apoptotic pathways in human allografts after ischemia–reperfusion injury. Transplantation 76:50–54PubMedCrossRefGoogle Scholar
  35. 35.
    Schwarz C, Regele H, Steininger R, Hansmann C, Mayer G, Oberbauer R (2001) The contribution of adhesion molecule expression in donor kidney biopsies to early allograft dysfunction. Transplantation 71:1666–1670PubMedCrossRefGoogle Scholar
  36. 36.
    Yang J, Goetz D, Li J-Y, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10:1045–1056PubMedCrossRefGoogle Scholar
  37. 37.
    Gwira JA, Wei F, Ishibe S, Ueland JM, Barasch J, Cantley LG (2005) Expression of NGAL regulates epithelial morphogenesis in vitro. J Biol Chem 280:7875–7882Google Scholar
  38. 38.
    Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P (2004) Amelioration of ischemic acute renal injury by NGAL. J Am Soc Nephrol 15:3073–3082PubMedCrossRefGoogle Scholar
  39. 39.
    Mori K, Lee HT, Rapoport D, Drexler I, Foster K, Yang J, Schmidt-Ott, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J (2005) Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia. J Clin Invest 115:610–621PubMedGoogle Scholar
  40. 40.
    Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, Isoniemi H, Backman L, Persson N, Neumayer HH, Jorgensen PF, Spieker C, Hendry B, Nicholls A, Kirste G, Hasche G (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimobab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European Anti-ICAM-1 Renal Transplant Study Group. Transplantation 67:729–736PubMedCrossRefGoogle Scholar
  41. 41.
    Acker CG, Flick R, Shapiro R, Shapiro R, Scantlebury VP, Jordan ML, Vivas C, Greenberg A, Johnson JP (2002) Thyroid hormone in the treatment of post-transplant acute tubular necrosis (ATN). Am J Transplant 2:57–61PubMedCrossRefGoogle Scholar
  42. 42.
    Hladunewich MA, Corrigan G, Derby GC, Ramaswamy D, Kambham N, Scandling JD, Myers BD (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64:593–602PubMedCrossRefGoogle Scholar
  43. 43.
    Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M, Haller H (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5:1992–1996PubMedCrossRefGoogle Scholar
  44. 44.
    Heilman RL, Mazur MJ, Reddy KS, Moss A, Post D, Mulligan D (2005) Steroid avoidance immunosuppression in low-risk kidney transplant. Transplant Proc 37:1785–1788PubMedCrossRefGoogle Scholar
  45. 45.
    Sakai K, Miyagi Y, Hasegawa T, Itabashi Y, Muramatsu M, Sugiyama K, Kawamura T, Arai K, Aikawa A, Ohara T, Mizuiri S, Hasegawa A (2005) The pathologic impact of tacrolimus on protocol biopsy in renal transplant patients with basiliximab-based immunosuppression. Transplant Proc 37:1757–1759PubMedCrossRefGoogle Scholar
  46. 46.
    Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury following cardiac surgery. Lancet 365:1231–1238PubMedCrossRefGoogle Scholar
  47. 47.
    Morrow DA, Braunwald E (2003) Future of biomarkers in acute coronary syndrome: Moving toward a multimarker strategy. Circulation 108:250–252PubMedCrossRefGoogle Scholar
  48. 48.
    Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P (2004) Neutrophil gelatinase-associated lipocalin (NGAL): a novel urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 24:307–315PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Jaya Mishra
    • 1
  • Qing Ma
    • 1
  • Caitlin Kelly
    • 1
  • Mark Mitsnefes
    • 1
  • Kiyoshi Mori
    • 2
  • Jonathan Barasch
    • 2
  • Prasad Devarajan
    • 1
    Email author
  1. 1.Nephrology and HypertensionCincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUSA
  2. 2.NephrologyColumbia UniversityNew YorkUSA

Personalised recommendations