Pediatric Nephrology

, Volume 21, Issue 5, pp 698–704 | Cite as

Duration of extracorporeal therapy in acute maple syrup urine disease: a kinetic model

  • Véronique PhanEmail author
  • Marie-José Clermont
  • Aicha Merouani
  • Catherine Litalien
  • Marisa Tucci
  • Marie Lambert
  • Grant Mitchell
  • Philippe Jouvet
Original Article


Maple syrup urine disease (MSUD, MIM 248600) can be complicated by metabolic crises necessitating extracorporeal removal therapy (ECRT). Since leucine levels are usually not immediately available during therapy, an accurate kinetic model of leucine plasma levels during removal would be useful to establish the duration of ECRT. Such a kinetic model is available for neonates undergoing continuous ECRT (CECRT) with a leucine clearance ≥35 ml min−1 1.73 m−2. The current study tests the validity of this model in older children. Plasma leucine levels were obtained from eleven ECRT sessions [seven CECRT and four intermittent hemodialysis (HDi) sessions] in seven children aged 1–14 years. No hemodynamic instability or neurological complications were observed during treatment. HDi provided a higher leucine clearance and required shorter sessions than CECRT (5.4±0.6 vs. 17.1±6.0 h). All patients regained precrisis neurological status except for one patient who had severe neurological damage (severe cerebral edema) at the time of dialysis and subsequently died despite efficient leucine removal. A leucine clearance ≥50 ml min−1 1.73 m−2 is required to obtain a kinetic model similar to that reported in neonates, both with CECRT and HDi. This model should be helpful in predicting the duration of therapy needed to attain desired leucine levels.


Maple syrup urine disease Hemofiltration Hemodialysis Kinetic modelling Leucine clearance Amino acid metabolism Inborn error of metabolism 


  1. 1.
    Thompson GN, Bresson JL, Pacy PJ, Bonnefont JP, Walter JH, Leonard JV, Saudubray JM, Halliday D (1990) Protein and leucine metabolism in maple syrup urine disease. Am J Physiol 258(4 Pt 1):E654–E660PubMedGoogle Scholar
  2. 2.
    Schadewaldt P, Bodner-Leidecker A, Hammen HW, Wendel U (2001) Whole-body L-leucine oxidation in patients with variant form of maple syrup urine disease. Pediatr Res 49(5):627–635CrossRefGoogle Scholar
  3. 3.
    Schadewaldt P, Hammen HW, Ott AC, Wendel U (1999) Renal clearance of branched-chain L-amino and 2-oxo acids in maple syrup urine disease. J Inherit Metab Dis 22(6):706–722CrossRefGoogle Scholar
  4. 4.
    Hilliges C, Awiszus D, Wendel U (1993) Intellectual performance of children with maple syrup urine disease. Eur J Pediatr 152(2):144–147CrossRefGoogle Scholar
  5. 5.
    Jouvet P, Hubert P, Saudubray JM, Rabier D, Man NK (2005) Kinetic modeling of plasma leucine levels during continuous venovenous extracorporeal removal therapy in neonates with maple syrup urine disease. Pediatr Res 58:278–282CrossRefGoogle Scholar
  6. 6.
    Jouvet P, Jugie M, Rabier D, Desgres J, Hubert P, Saudubray JM, Man NK (2001) Combined nutritional support and continuous extracorporeal removal therapy in the severe acute phase of maple syrup urine disease. Intensive Care Med 27(11):1798–1806CrossRefGoogle Scholar
  7. 7.
    Fiser DH (1992) Assessing the outcome of pediatric intensive care. J Pediatr 121(1):68–74CrossRefGoogle Scholar
  8. 8.
    Sharkey I, Boddy AV, Wallace H, Mycroft J, Hollis R, Picton S (2001) Body surface area estimation in children using weight alone: application in paediatric oncology. Br J Cancer 85(1):23–28CrossRefGoogle Scholar
  9. 9.
    Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ (2000) Body composition during the first 2 years of life: an updated reference. Pediatr Res 47(5):578–585CrossRefGoogle Scholar
  10. 10.
    Flynn JT (2002) Choice of dialysis modality for management of pediatric acute renal failure. Pediatr Nephrol 17(1):61–69CrossRefGoogle Scholar
  11. 11.
    Gouyon JB, Desgres J, Mousson C (1994) Removal of branched-chain amino acids by peritoneal dialysis, continuous arteriovenous hemofiltration, and continuous arteriovenous hemodialysis in rabbits: implications for maple syrup urine disease treatment. Pediatr Res 35(3):357–361CrossRefGoogle Scholar
  12. 12.
    Gouyon JB, Francoise M, Desgres J, Petion AM, Sandre D (1994) Removal of amino acids by continuous hemofiltration and hemodiafiltration. Arch Pediatr 1(5):501–504PubMedGoogle Scholar
  13. 13.
    Schaefer F, Straube E, Oh J, Mehls O, Mayatepek E (1999) Dialysis in neonates with inborn errors of metabolism. Nephrol Dial Transplant 14(4):910–918CrossRefGoogle Scholar
  14. 14.
    Sadowski RH, Harmon WE, Jabs K (1994) Acute hemodialysis of infants weighing less than five kilograms. Kidney Int 45(3):903–906CrossRefGoogle Scholar
  15. 15.
    Rajpoot DK, Gargus JJ (2004) Acute hemodialysis for hyperammonemia in small neonates. Pediatr Nephrol 19(4):390–395CrossRefGoogle Scholar

Copyright information

© IPNA 2006

Authors and Affiliations

  • Véronique Phan
    • 1
    • 5
    Email author
  • Marie-José Clermont
    • 1
  • Aicha Merouani
    • 1
  • Catherine Litalien
    • 2
  • Marisa Tucci
    • 2
  • Marie Lambert
    • 3
  • Grant Mitchell
    • 3
  • Philippe Jouvet
    • 2
    • 4
  1. 1.Division of NephrologyCentre Universitaire Mère-Enfant Sainte-Justine HospitalMontrealCanada
  2. 2.Pediatric Intensive CareCentre Universitaire Mère-Enfant Sainte-Justine HospitalMontrealCanada
  3. 3.Metabolic GeneticsCentre Universitaire Mère-Enfant Sainte-Justine HospitalMontrealCanada
  4. 4.Necker HospitalParisFrance
  5. 5.Division of Pediatric NephrologyCentre Hospitalier Universitaire Sainte JustineMontréalCanada

Personalised recommendations