Pediatric Nephrology

, Volume 21, Issue 3, pp 382–389

Carbon monoxide prevents apoptosis induced by uropathogenic Escherichia coli toxins

  • Ming Chen
  • Roshan Tofighi
  • Wenjie Bao
  • Olle Aspevall
  • Timo Jahnukainen
  • Lars E. Gustafsson
  • Sandra Ceccatelli
  • Gianni Celsi
Original Article

Abstract

Urinary tract infections (UTIs) are often caused by Escherichia coli (E. coli). Previous studies have demonstrated that up-regulation of heme oxygenase-1 (HO-1) may trigger a survival mechanism against renal cell death induced by E. coli toxins. The present study analyses the role of carbon monoxide (CO), an end product of HO-1, in the survival mechanism. Moreover, we identified hemolysin as a putative pro-apoptotic toxin in the E. coli supernatant. Tubular cells were incubated with CO in the presence or absence of E. coli toxins. Uropathogenic or transformants of non-pathogenic strains expressing hemolysin were used. We found that the survival pathway during E. coli infection might be activated by HO-1-derived production of CO. The protection by CO was also associated with up-regulation of p21 protein expression. Furthermore, we found that in children with pyelonephritis, all the E. coli strains expressing hemolysin induced apoptosis. In E. coli strains not expressing hemolysin, only 45% of the strains could induce apoptosis. In conclusion, generation of CO elicited by HO-1 could promote survival signaling in renal cells. Hemolysin is one of the secreted toxins that are involved in inducing apoptosis during UTI.

Keywords

Carbon monoxide Cell death Hemolysin Heme oxygenase-1 Nitric oxide Pyelonephritogenic E. coli 

References

  1. 1.
    Hansson SUJ (1999) Urinary tract infection, in pediatric nephrology. In: Barrat EA, Harmon W (eds) Urinary tract infection, in pediatric nephrology. Lippincott, Baltimore, pp 835–850Google Scholar
  2. 2.
    Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, Skill NJ, Haylor JL, El Nahas AM (2001) Expression of apoptosis-related genes and proteins in experimental chronic renal scarring. J Am Soc Nephrol 12:275–288PubMedGoogle Scholar
  3. 3.
    Ortiz A (2000) Renal cell loss through cell suicide. Kidney Int 58:2235–2236CrossRefPubMedGoogle Scholar
  4. 4.
    Ortiz A, Lorz C, Justo P, Catalan MP, Egido J (2001) Contribution of apoptotic cell death to renal injury. J Cell Mol Med 5:18–32PubMedGoogle Scholar
  5. 5.
    Qiu LQ, Sinniah R, Hsu SI (2004) Coupled induction of iNOS and p53 upregulation in renal resident cells may be linked with apoptotic activity in the pathogenesis of progressive IgA nephropathy. J Am Soc Nephrol 15:2066–2078CrossRefPubMedGoogle Scholar
  6. 6.
    Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci USA 90:9813–9817PubMedGoogle Scholar
  7. 7.
    Chen M, Bao W, Aizman R, Huang P, Aspevall O, Gustafsson LE, Ceccatelli S, Celsi G (2004) Activation of extracellular signal-regulated kinase mediates apoptosis induced by uropathogenic Escherichia coli toxins via nitric oxide synthase: protective role of heme oxygenase-1. J Infect Dis 190:127–135CrossRefPubMedGoogle Scholar
  8. 8.
    Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554CrossRefPubMedGoogle Scholar
  9. 9.
    Platt JL, Nath KA (1998) Heme oxygenase: protective gene or Trojan horse. Nat Med 4:1364–1365CrossRefPubMedGoogle Scholar
  10. 10.
    Thom SR, Fisher D, Xu YA, Notarfrancesco K, Ischiropoulos H (2000) Adaptive responses and apoptosis in endothelial cells exposed to carbon monoxide. Proc Natl Acad Sci USA 97:1305–1310CrossRefPubMedGoogle Scholar
  11. 11.
    Song R, Kubo M, Morse D, Zhou Z, Zhang X, Dauber JH, Fabisiak J, Alber SM, Watkins SC, Zuckerbraun BS, Otterbein LE, Ning W, Oury TD, Lee PJ, McCurry KR, Choi AM (2003) Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Pathol 163:231–242PubMedGoogle Scholar
  12. 12.
    Sass G, Soares MC, Yamashita K, Seyfried S, Zimmermann WH, Eschenhagen T, Kaczmarek E, Ritter T, Volk HD, Tiegs G (2003) Heme oxygenase-1 and its reaction product, carbon monoxide, prevent inflammation-related apoptotic liver damage in mice. Hepatology 38:909–918CrossRefPubMedGoogle Scholar
  13. 13.
    Liu H, Mount DB, Nasjletti A, Wang W (1999) Carbon monoxide stimulates the apical 70-pS K+ channel of the rat thick ascending limb. J Clin Invest 103:963–970PubMedGoogle Scholar
  14. 14.
    O’Donaughy TL, Walker BR (2000) Renal vasodilatory influence of endogenous carbon monoxide in chronically hypoxic rats. Am J Physiol Heart Circ Physiol 279:H2908–2915PubMedGoogle Scholar
  15. 15.
    Lory S (1998) Secretion of proteins and assembly of bacterial surface organelles: shared pathways of extracellular protein targeting. Curr Opin Microbiol 1:27–35CrossRefPubMedGoogle Scholar
  16. 16.
    Traylor LA, Mayeux PR (1997) Nitric oxide generation mediates lipid A-induced oxidant injury in renal proximal tubules. Arch Biochem Biophys 338:129–135CrossRefPubMedGoogle Scholar
  17. 17.
    de Man P, van Kooten C, Aarden L, Engberg I, Linder H, Svanborg Eden C (1989) Interleukin-6 induced at mucosal surfaces by gram-negative bacterial infection. Infect Immun 57:3383–3388PubMedGoogle Scholar
  18. 18.
    Doye A, Mettouchi A, Bossis G, Clement R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564CrossRefPubMedGoogle Scholar
  19. 19.
    Trifillis AL, Donnenberg MS, Cui X, Russell RG, Utsalo SJ, Mobley HL, Warren JW (1994) Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int 46:1083–1091PubMedGoogle Scholar
  20. 20.
    Warren JW, Mobley HL, Hebel JR, Trifillis AL (1995) Cytolethality of hemolytic Escherichia coli to primary human renal proximal tubular cell cultures obtained from different donors. Urology 45:706–710CrossRefPubMedGoogle Scholar
  21. 21.
    Uhlen P, Laestadius A, Jahnukainen T, Soderblom T, Backhed F, Celsi G, Brismar H, Normark S, Aperia A, Richter-Dahlfors A (2000) Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405:694–697CrossRefPubMedGoogle Scholar
  22. 22.
    Ulett GC, Bohnsack JF, Armstrong J, Adderson EE (2003) Beta-hemolysin-independent induction of apoptosis of macrophages infected with serotype III group B streptococcus. J Infect Dis 188:1049–1053CrossRefPubMedGoogle Scholar
  23. 23.
    Lang PA, Kaiser S, Myssina S, Birka C, Weinstock C, Northoff H, Wieder T, Lang F, Huber SM (2004) Effect of Vibrio parahaemolyticus haemolysin on human erythrocytes. Cell Microbiol 6:391–400CrossRefPubMedGoogle Scholar
  24. 24.
    Serlachius E, Sundelin B, Eklof AC, Jahnke M, Laestadius A, Aperia A (1997) Pyelonephritis provokes growth retardation and apoptosis in infant rat renal cortex. Kidney Int 51:1855–1862PubMedGoogle Scholar
  25. 25.
    Bachmann BJ (1972) Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36:525–557PubMedGoogle Scholar
  26. 26.
    Vogel M, Hess J, Then I, Juarez A, Goebel W (1988) Characterization of a sequence (hlyR) which enhances synthesis and secretion of hemolysin in Escherichia coli. Mol Gen Genet 212:76–84CrossRefPubMedGoogle Scholar
  27. 27.
    Ludwig A, Vogel M, Goebel W (1987) Mutations affecting activity and transport of hemolysin in Escherichia coli. Mol Gen Genet 206:238–245CrossRefPubMedGoogle Scholar
  28. 28.
    Schlager TA, Whittam TS, Hendley JO, Bhang JL, Wobbe CL, Stapleton A (2003) Variation in frequency of the virulence-factor gene in Escherichia coli clones colonizing the stools and urinary tracts of healthy prepubertal girls. J Infect Dis 188:1059–1064CrossRefPubMedGoogle Scholar
  29. 29.
    Moore WJ (1972) Physical chemistry, LongmanGoogle Scholar
  30. 30.
    Battino R (1999) Carbon monoxide: Solubility Data Series. PergamonGoogle Scholar
  31. 31.
    Chen M, Jahnukainen T, Bao W, Dare E, Ceccatelli S, Celsi G (2003) Uropathogenic Escherichia coli toxins induce caspase-independent apoptosis in renal proximal tubular cells via ERK signaling. Am J Nephrol 23:140–151CrossRefPubMedGoogle Scholar
  32. 32.
    Wang J, Walsh K (1996) Resistance to apoptosis conferred by CDK inhibitors during myocyte differentiation. Science 273:359–361PubMedMathSciNetGoogle Scholar
  33. 33.
    Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP (2000) Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 192:1015–1026CrossRefPubMedGoogle Scholar
  34. 34.
    McMillan K, Bredt DS, Hirsch DJ, Snyder SH, Clark JE, Masters BS (1992) Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci USA 89:11141–11145PubMedGoogle Scholar
  35. 35.
    Rodriguez F, Kemp R, Balazy M, Nasjletti A (2003) Effects of exogenous heme on renal function: Role of heme oxygenase and cyclooxygenase. Hypertension 42:680–684CrossRefPubMedGoogle Scholar
  36. 36.
    Rodriguez F, Lamon BD, Gong W, Kemp R, Nasjletti A (2004) Nitric oxide synthesis inhibition promotes renal production of carbon monoxide. Hypertension 43:347–351CrossRefPubMedGoogle Scholar
  37. 37.
    Wolff DG, Bidlack WR (1976) The formation of carbon monoxide during peroxidation of microsomal lipids. Biochem Biophys Res Commun 73:850–857CrossRefPubMedGoogle Scholar
  38. 38.
    Smith RP, Klaassen ICD, Amdur MO, Doull J (1986) Casarett and Doull’s toxicology—The basic science of poisons, 3rd edn. Macmillan, p 223–244Google Scholar
  39. 39.
    Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428CrossRefPubMedGoogle Scholar
  40. 40.
    Wang R, Wang Z, Wu L (1997) Carbon monoxide-induced vasorelaxation and the underlying mechanisms. Br J Pharmacol 121:927–934PubMedGoogle Scholar
  41. 41.
    Gunther L, Berberat PO, Haga M, Brouard S, Smith RN, Soares MP, Bach FH, Tobiasch E (2002) Carbon monoxide protects pancreatic beta-cells from apoptosis and improves islet function/survival after transplantation. Diabetes 51:994–999PubMedGoogle Scholar
  42. 42.
    Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AM (2000) Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol 278:L312–319PubMedGoogle Scholar
  43. 43.
    Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, Choi AM, Lee PJ (2003) Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 278:1248–1258CrossRefPubMedGoogle Scholar
  44. 44.
    Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N (2004) Protection of transplant-induced renal ischemia/reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287:F979–989CrossRefPubMedGoogle Scholar
  45. 45.
    Daemen MA, van ‘t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA (1999) Inhibition of apoptosis induced by ischemia reperfusion prevents inflammation. J Clin Invest 104:541–549PubMedGoogle Scholar
  46. 46.
    Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AM, Soares MP (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190CrossRefPubMedGoogle Scholar
  47. 47.
    Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA (2001) Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int 60:2181–2191CrossRefPubMedGoogle Scholar
  48. 48.
    Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ (1997) p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells. Oncogene 14:929–935CrossRefPubMedGoogle Scholar
  49. 49.
    Megyesi J, Safirstein RL, Price PM (1998) Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 101:777–782PubMedGoogle Scholar
  50. 50.
    Xu SQ, El-Deiry WS (2000) p21(WAF1/CIP1) inhibits initiator caspase cleavage by TRAIL death receptor DR4. Biochem Biophys Res Commun 269:179–190CrossRefPubMedGoogle Scholar
  51. 51.
    Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M (1998) Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17:931–939CrossRefPubMedGoogle Scholar
  52. 52.
    Jonas D, Schultheis B, Klas C, Krammer PH, Bhakdi S (1993) Cytocidal effects of Escherichia coli hemolysin on human T lymphocytes. Infect Immun 61:1715–1721PubMedGoogle Scholar

Copyright information

© IPNA 2005

Authors and Affiliations

  • Ming Chen
    • 1
    • 7
  • Roshan Tofighi
    • 2
  • Wenjie Bao
    • 3
  • Olle Aspevall
    • 4
  • Timo Jahnukainen
    • 5
  • Lars E. Gustafsson
    • 6
  • Sandra Ceccatelli
    • 2
  • Gianni Celsi
    • 1
  1. 1.Department of Clinical Science, Division of PediatricsKarolinska InstitutetStockholmSweden
  2. 2.Division of Toxicology and Neurotoxicology, Department of Environmental MedicineKarolinska InstituteStockholmSweden
  3. 3.Microbiology and Tumor Biology CenterKarolinska InstituteStockholmSweden
  4. 4.Department of Clinical BacteriologyKarolinska InstituteStockholmSweden
  5. 5.Department of PediatricsTurku University HospitalTurkuFinland
  6. 6.Department of Physiology and PharmacologyKarolinska InstituteStockholmSweden
  7. 7.Department of Medical Nutrition NOVUMKarolinska University Hospital-HuddingeStockholmSweden

Personalised recommendations