Pediatric Nephrology

, Volume 20, Issue 3, pp 295–302

Molecular physiology, pathology, and regulation of the growth hormone/insulin-like growth factor-I system

  • Joachim Woelfle
  • Dennis J. Chia
  • Mylynda B. Massart-Schlesinger
  • Paula Moyano
  • Peter Rotwein
Review
  • 133 Downloads

Abstract

Since the somatomedin hypothesis of growth hormone (GH) action was first formulated nearly 50 years ago, the key roles of both GH and insulin-like growth factor (IGF)-I in human growth have been confirmed and extended to include local effects on tissue maintenance and repair. More recent insights have revealed a dark side to the GH/IGF-I signaling system. Both proteins have been implicated as potential contributing factors in selected human cancers, and normal activity through this signaling pathway has been linked to diminished lifespan in experimental animals. This review highlights both the positive and negative aspects of the GH/IGF-I-growth pathway. The overall goal is to reinforce the need for more complete understanding of the mechanisms of signaling and action of GH and IGF-I, in order to separate, if possible, the potentially beneficial outcomes on growth and on tissue maintenance and repair from deleterious effects on cancer risk and lifespan.

Keywords

Growth regulation Aging Cancer Stat5 Gene transcription 

References

  1. 1.
    Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49:825–836PubMedGoogle Scholar
  2. 2.
    Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91PubMedGoogle Scholar
  3. 3.
    Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34CrossRefPubMedGoogle Scholar
  4. 4.
    Le Roith D, Bondy C, Yakar S, Liu JL, Butler A (2001) The somatomedin hypothesis: 2001. Endocr Rev 22:53–74CrossRefPubMedGoogle Scholar
  5. 5.
    Melmed S (2001) In: DeGroot LJ, Jameson JL (eds) Saunders, Philadelphia, pp 300–312Google Scholar
  6. 6.
    Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58CrossRefPubMedGoogle Scholar
  7. 7.
    Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351CrossRefPubMedGoogle Scholar
  8. 8.
    Ibrahim YH, Yee D (2004) Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res (in press)Google Scholar
  9. 9.
    Laban C, Bustin SA, Jenkins PJ (2003) The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab 14:28–34CrossRefPubMedGoogle Scholar
  10. 10.
    Mayo KE (1996) A little lesson in growth regulation. Nat Genet 12:8–9CrossRefPubMedGoogle Scholar
  11. 11.
    Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J (1994) Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev 15:369-390CrossRefPubMedGoogle Scholar
  12. 12.
    Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM (1995) Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med 333:1093–1098CrossRefPubMedGoogle Scholar
  13. 13.
    Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD (2003) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 349:2211–2222CrossRefPubMedGoogle Scholar
  14. 14.
    Woods KA, Camacho-Hubner C, Savage MO, Clark AJ (1996) Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med 335:1363–1367CrossRefPubMedGoogle Scholar
  15. 15.
    Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA (1993) IGF-I is required for normal embryonic growth in mice. Genes Dev 7:2609–2617PubMedGoogle Scholar
  16. 16.
    Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72CrossRefPubMedGoogle Scholar
  17. 17.
    Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A (2001) Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 229:141–162CrossRefPubMedGoogle Scholar
  18. 18.
    Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA (2000) Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106:1095–1103PubMedGoogle Scholar
  19. 19.
    Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S (2001) Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology 142:4349–4356CrossRefPubMedGoogle Scholar
  20. 20.
    Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441CrossRefPubMedGoogle Scholar
  21. 21.
    Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A (1997) Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 99:2961–2970PubMedGoogle Scholar
  22. 22.
    McCarthy TL, Centrella M, Canalis E (1989) Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology 124:1247–1253PubMedGoogle Scholar
  23. 23.
    Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowaki T, Nakamura K, Kawaguchi H (2000) Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 105:935–943PubMedGoogle Scholar
  24. 24.
    Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D (2002) Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109:347–355CrossRefPubMedGoogle Scholar
  25. 25.
    Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116CrossRefPubMedGoogle Scholar
  26. 26.
    Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95:15603–15607CrossRefPubMedGoogle Scholar
  27. 27.
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019CrossRefPubMedGoogle Scholar
  28. 28.
    Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200Google Scholar
  29. 29.
    Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148CrossRefPubMedGoogle Scholar
  30. 30.
    Caroni P, Schneider C (1994) Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci 14:3378–3388PubMedGoogle Scholar
  31. 31.
    Edwall D, Schalling M, Jennische E, Norstedt G (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology 124:820–825PubMedGoogle Scholar
  32. 32.
    DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–E95PubMedGoogle Scholar
  33. 33.
    Carson JA, Nettleton D, Reecy JM (2002) Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 16:207–209PubMedGoogle Scholar
  34. 34.
    Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351:1393–1396CrossRefPubMedGoogle Scholar
  35. 35.
    Kaaks R, Lundin E, Rinaldi S, Manjer J, Biessy C, Soderberg S, Lenner P, Janzon L, Riboli E, Berglund G, Hallmans G (2002) Prospective study of IGF-I, IGF-binding proteins, and breast cancer risk, in northern and southern Sweden. Cancer Causes Control 13:307–316CrossRefPubMedGoogle Scholar
  36. 36.
    Missmer SA, Haiman CA, Hunter DJ, Willett WC, Colditz GA, Speizer FE, Pollak MN, Hankinson SE (2002) A sequence repeat in the insulin-like growth factor-1 gene and risk of breast cancer. Int J Cancer 100:332–336CrossRefPubMedGoogle Scholar
  37. 37.
    Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081CrossRefPubMedGoogle Scholar
  38. 38.
    Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM (1996) Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137:321–330CrossRefPubMedGoogle Scholar
  39. 39.
    Tornell J, Carlsson B, Pohjanen P, Wennbo H, Rymo L, Isaksson O (1992) High frequency of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice created from two different strains of mice. J Steroid Biochem Mol Biol 43:237–242CrossRefPubMedGoogle Scholar
  40. 40.
    Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF (1995) Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br J Cancer 72:1189–1193PubMedGoogle Scholar
  41. 41.
    Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull FCJ, Allred DC, Osborne CK (1989) Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84:1418–1423PubMedGoogle Scholar
  42. 42.
    Yang XF, Beamer WG, Huynh H, Pollak M (1996) Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res 56:1509–1511PubMedGoogle Scholar
  43. 43.
    Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279:563–566CrossRefPubMedGoogle Scholar
  44. 44.
    Stattin P, Bylund A, Rinaldi S, Biessy C, Dechaud H, Stenman UH, Egevad L, Riboli E, Hallmans G, Kaaks R (2000) Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst 92:1910–1917CrossRefPubMedGoogle Scholar
  45. 45.
    Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, Stampfer MJ (1999) Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 91:620–625CrossRefPubMedGoogle Scholar
  46. 46.
    Palmqvist R, Hallmans G, Rinaldi S, Biessy C, Stenling R, Riboli E, Kaaks R (2002) Plasma insulin-like growth factor 1, insulin-like growth factor binding protein 3, and risk of colorectal cancer: a prospective study in northern Sweden. Gut 50:642–646CrossRefPubMedGoogle Scholar
  47. 47.
    Kenyon C (2001) A conserved regulatory system for aging. Cell 105:165–168CrossRefPubMedGoogle Scholar
  48. 48.
    Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999CrossRefPubMedGoogle Scholar
  49. 49.
    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946CrossRefPubMedGoogle Scholar
  50. 50.
    Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278:1319–1322CrossRefPubMedGoogle Scholar
  51. 51.
    Apfeld J, Kenyon C (1998) Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95:199–210CrossRefPubMedGoogle Scholar
  52. 52.
    Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110CrossRefPubMedGoogle Scholar
  53. 53.
    Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106CrossRefPubMedGoogle Scholar
  54. 54.
    Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33CrossRefGoogle Scholar
  55. 55.
    Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci USA 98:6736–6741CrossRefPubMedGoogle Scholar
  56. 56.
    Coschigano KT, Clemmons D, Bellush LL, Kopchick JJ (2000) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141:2608–2613CrossRefPubMedGoogle Scholar
  57. 57.
    Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187CrossRefPubMedGoogle Scholar
  58. 58.
    Herrington J, Carter-Su C (2001) Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab 12:252–257CrossRefPubMedGoogle Scholar
  59. 59.
    Ridderstrale M, Degerman E, Tornqvist H (1995) Growth hormone stimulates the tyrosine phosphorylation of the insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase in primary adipocytes. J Biol Chem 270:3471–3474CrossRefPubMedGoogle Scholar
  60. 60.
    Argetsinger LS, Norstedt G, Billestrup N, White MF, Carter-Su C (1996) Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling. J Biol Chem 271:29415–29421CrossRefPubMedGoogle Scholar
  61. 61.
    Argetsinger LS, Hsu GW, Myers MGJ, Billestrup N, White MF, Carter-Su C (1995) Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem 270:14685–14692CrossRefPubMedGoogle Scholar
  62. 62.
    Vanderkuur JA, Butch ER, Waters SB, Pessin JE, Guan KL, Carter-Su C (1997) Signaling molecules involved in coupling growth hormone receptor to mitogen-activated protein kinase activation. Endocrinology 138:4301–4307CrossRefPubMedGoogle Scholar
  63. 63.
    VanderKuur J, Allevato G, Billestrup N, Norstedt G, Carter-Su C (1995) Growth hormone-promoted tyrosyl phosphorylation of SHC proteins and SHC association with Grb2. J Biol Chem 270:7587–7593CrossRefPubMedGoogle Scholar
  64. 64.
    Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, Honjo M, Takahashi M, Takahashi T, Hirai H, Tushima T, Akanuma Y, Fujita T, Komuro I, Yazaki Y, Kadowaki T (1997) Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature 390:91–96CrossRefPubMedGoogle Scholar
  65. 65.
    Chow JC, Ling PR, Qu Z, Laviola L, Ciccarone A, Bistrian BR, Smith RJ (1996) Growth hormone stimulates tyrosine phosphorylation of JAK2 and STAT5, but not insulin receptor substrate-1 or SHC proteins in liver and skeletal muscle of normal rats in vivo. Endocrinology 137:2880–2886CrossRefPubMedGoogle Scholar
  66. 66.
    Love DW, Whatmore AJ, Clayton PE, Silva CM (1998) Growth hormone stimulation of the mitogen-activated protein kinase pathway is cell type specific. Endocrinology 139:1965–1971CrossRefPubMedGoogle Scholar
  67. 67.
    Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C (1997) Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17:6633–6644PubMedGoogle Scholar
  68. 68.
    Ram PA, Waxman DJ (1997) Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem 272:17694–17702CrossRefPubMedGoogle Scholar
  69. 69.
    Kim SO, Jiang J, Yi W, Feng GS, Frank SJ (1998) Involvement of the Src homology 2-containing tyrosine phosphatase SHP-2 in growth hormone signaling. J Biol Chem 273:2344–2354CrossRefPubMedGoogle Scholar
  70. 70.
    Stofega MR, Wang H, Ullrich A, Carter-Su C (1998) Growth hormone regulation of SIRP and SHP-2 tyrosyl phosphorylation and association. J Biol Chem 273:7112–7117CrossRefPubMedGoogle Scholar
  71. 71.
    Zhu T, Goh EL, Lobie PE (1998) Growth hormone stimulates the tyrosine phosphorylation and association of p125 focal adhesion kinase (FAK) with JAK2. Fak is not required for stat-mediated transcription. J Biol Chem 273:10682–10689CrossRefPubMedGoogle Scholar
  72. 72.
    Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N (1998) Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 273:1285–1287CrossRefPubMedGoogle Scholar
  73. 73.
    Greenhalgh CJ, Bertolino P, Asa SL, Metcalf D, Corbin JE, Adams TE, Davey HW, Nicola NA, Hilton DJ, Alexander WS (2002) Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b). Mol Endocrinol 16:1394–1406CrossRefPubMedGoogle Scholar
  74. 74.
    Levy DE, Darnell JEJ (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662Google Scholar
  75. 75.
    Gronowski AM, Rotwein P (1994) Rapid changes in nuclear protein tyrosine phosphorylation after growth hormone treatment in vivo. Identification of phosphorylated mitogen-activated protein kinase and STAT91. J Biol Chem 269:7874–7878PubMedGoogle Scholar
  76. 76.
    Gronowski AM, Zhong Z, Wen Z, Thomas MJ, Darnell JEJ, Rotwein P (1995) In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol Endocrinol 9:171–177CrossRefPubMedGoogle Scholar
  77. 77.
    Ram PA, Park SH, Choi HK, Waxman DJ (1996) Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem 271:5929–5940CrossRefPubMedGoogle Scholar
  78. 78.
    Campbell GS, Meyer DJ, Raz R, Levy DE, Schwartz J, Carter-Su C (1995) Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem 270:3974–3979CrossRefPubMedGoogle Scholar
  79. 79.
    Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C (1997) Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic acid binding activity of Stat5A and Stat5B. Endocrinology 138:3426–3434CrossRefPubMedGoogle Scholar
  80. 80.
    Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C (1996) The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol 10:519–533CrossRefPubMedGoogle Scholar
  81. 81.
    Gebert CA, Park SH, Waxman DJ (1997) Regulation of signal transducer and activator of transcription (STAT) 5b activation by the temporal pattern of growth hormone stimulation. Mol Endocrinol 11:400–414CrossRefPubMedGoogle Scholar
  82. 82.
    Yoon JB, Berry SA, Seelig S, Towle HC (1990) An inducible nuclear factor binds to a growth hormone-regulated gene. J Biol Chem 265:19947–19954PubMedGoogle Scholar
  83. 83.
    Berry SA, Bergad PL, Whaley CD, Towle HC (1994) Binding of a growth hormone-inducible nuclear factor is mediated by tyrosine phosphorylation. Mol Endocrinol 8:1714–1719CrossRefPubMedGoogle Scholar
  84. 84.
    Bergad PL, Shih HM, Towle HC, Schwarzenberg SJ, Berry SA (1995) Growth hormone induction of hepatic serine protease inhibitor 2.1 transcription is mediated by a Stat5-related factor binding synergistically to two gamma-activated sites. J Biol Chem 270:24903–24910CrossRefPubMedGoogle Scholar
  85. 85.
    Teglund S, McKay C, Schuetz E, Deursen JM van, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93:841–850CrossRefPubMedGoogle Scholar
  86. 86.
    Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW (1997) Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94:7239–7244CrossRefPubMedGoogle Scholar
  87. 87.
    Pfitzner E, Jahne R, Wissler M, Stoecklin E, Groner B (1998) p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol 12:1582–1593CrossRefPubMedGoogle Scholar
  88. 88.
    Ye SK, Agata Y, Lee HC, Kurooka H, Kitamura T, Shimizu A, Honjo T, Ikuta K (2001) The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. Immunity 15:813–823CrossRefPubMedGoogle Scholar
  89. 89.
    Peng B, Sutherland KD, Sum EY, Olayioye M, Wittlin S, Tang TK, Lindeman GJ, Visvader JE (2002) CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity. Mol Endocrinol 16:2019–2033CrossRefPubMedGoogle Scholar
  90. 90.
    Rascle A, Johnston JA, Amati B (2003) Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 23:4162–4173CrossRefPubMedGoogle Scholar
  91. 91.
    Xu M, Nie L, Kim SH, Sun XH (2003) STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBPbeta. EMBO J 22:893–904CrossRefPubMedGoogle Scholar
  92. 92.
    Rotwein P (1999) In: Rosenfeld R, Roberts CJ (eds) Molecular biology of IGF-I and IGF-II. Humana, Totowa, N.J., pp 19–35Google Scholar
  93. 93.
    Kajimoto Y, Rotwein P (1991) Structure of the chicken insulin-like growth factor I gene reveals conserved promoter elements. J Biol Chem 266:9724–9731PubMedGoogle Scholar
  94. 94.
    Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CTJ, LeRoith D (1993) Structure of the chum salmon insulin-like growth factor I gene. DNA Cell Biol 12:729–737PubMedGoogle Scholar
  95. 95.
    Hall LJ, Kajimoto Y, Bichell D, Kim SW, James PL, Counts D, Nixon LJ, Tobin G, Rotwein P (1992) Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol 11:301–313PubMedGoogle Scholar
  96. 96.
    Adamo ML, Ben-Hur H, Roberts CTJ, LeRoith D (1991) Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes. Mol Endocrinol 5:1677–1686PubMedGoogle Scholar
  97. 97.
    Shimatsu A, Rotwein P (1987) Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem 262:7894–7900PubMedGoogle Scholar
  98. 98.
    Kim SW, Lajara R, Rotwein P (1991) Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol 5:1964–1972PubMedGoogle Scholar
  99. 99.
    Hoyt EC, Van Wyk JJ, Lund PK (1988) Tissue and development specific regulation of a complex family of rat insulin-like growth factor I messenger ribonucleic acids. Mol Endocrinol 2:1077–1086PubMedGoogle Scholar
  100. 100.
    Woelfle J, Billiard J, Rotwein P (2003) Acute control of insulin-like growth factor-1 gene transcription by growth hormone through STAT5B. J Biol Chem 278:22696–22702CrossRefPubMedGoogle Scholar
  101. 101.
    Woelfle J, Chia DJ, Rotwein P (2003) Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem 278:51261–51266CrossRefPubMedGoogle Scholar
  102. 102.
    Bichell DP, Kikuchi K, Rotwein P (1992) Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol 6:1899–1908CrossRefPubMedGoogle Scholar
  103. 103.
    An MR, Lowe WLJ (1995) The major promoter of the rat insulin-like growth factor-I gene binds a protein complex that is required for basal expression. Mol Cell Endocrinol 114:77–89CrossRefPubMedGoogle Scholar
  104. 104.
    Mittanck DW, Kim SW, Rotwein P (1997) Essential promoter elements are located within the 5’ untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol 126:153–163CrossRefPubMedGoogle Scholar
  105. 105.
    Wang L, Wang X, Adamo ML (2000) Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. Endocrinology 141:1118–1126CrossRefPubMedGoogle Scholar
  106. 106.
    Wang X, Talamantez JL, Adamo ML (1998) A CACCC box in the proximal exon 2 promoter of the rat insulin-like growth factor I gene is required for basal promoter activity. Endocrinology 139:1054–1066CrossRefPubMedGoogle Scholar
  107. 107.
    Thomas MJ, Kikuchi K, Bichell DP, Rotwein P (1995) Characterization of deoxyribonucleic acid-protein interactions at a growth hormone-inducible nuclease hypersensitive site in the rat insulin-like growth factor-I gene. Endocrinology 136:562–569CrossRefPubMedGoogle Scholar
  108. 108.
    Ye P, Umayahara Y, Ritter D, Bunting T, Auman H, Rotwein P, D’Ercole AJ (1997) Regulation of insulin-like growth factor I (IGF-I) gene expression in brain of transgenic mice expressing an IGF-I-luciferase fusion gene. Endocrinology 138:5466–5475CrossRefPubMedGoogle Scholar
  109. 109.
    Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG (2003). Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 349:1139–1147CrossRefPubMedGoogle Scholar

Copyright information

© IPNA 2004

Authors and Affiliations

  • Joachim Woelfle
    • 1
  • Dennis J. Chia
    • 1
    • 2
  • Mylynda B. Massart-Schlesinger
    • 1
  • Paula Moyano
    • 1
  • Peter Rotwein
    • 1
    • 3
  1. 1.Molecular Medicine Division, Department of MedicineOregon Health and Science UniversityPortlandUSA
  2. 2.Division of Endocrinology, Department of PediatricsOregon Health and Science UniversityPortlandUSA
  3. 3.Molecular Medicine DivisionOregon Health and Science UniversityPortlandUSA

Personalised recommendations