Advertisement

Computational Mechanics

, Volume 23, Issue 5–6, pp 397–403 | Cite as

An improved multigrid method for Euler equations

  • J. C. Mandal
  • H. S. Rajput
Article

Abstract

A new full approximation storage multigrid method has been developed for Euler equations. Instead of the usual approach of using frozen τ (the relative truncation error between fine and coarse grid levels), the relative truncation error is distributed over coarse grids based on the solution of a set of model equations at every time step. This allows for more number of sweeps at coarse grid level. As a result, the present multigrid method is able to accelerate the solution at much faster rate than the conventional multigrid method. A first order Steger and Warming flux vector splitting strategy has been used here for solving Euler equations as well as the model equations for τ. Results are presented to demonstrate the ability of the present multigrid method.

Keywords

Warming Flux Model Equation Fast Rate Euler Equation Coarse Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • J. C. Mandal
    • 1
  • H. S. Rajput
    • 1
  1. 1.Department of Aerospace Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, IndiaIN

Personalised recommendations