Nitsche’s method for non-conforming multipatch coupling in hyperelastic isogeometric analysis

  • Xiaoxiao Du
  • Gang Zhao
  • Wei WangEmail author
  • Howie Fang
Original Paper


Complex geometric models are usually built with multiple NURBS patches with non-conforming interfaces, which bring difficulties within the isogeometric analysis. In this paper, Nitsche’s method is employed to glue different patches for nonlinear isogeometric analysis of hyperelastic material models which are widely used to describe the material behavior of rubbers, foams, biological tissues, etc. Nitsche based weakly governing equations and discretized stiffness matrices are detailedly developed in total Lagrangian form for isogeometric implementation. Different popular hyperelastic materials including Neo–Hookean, Mooney–Rivlin and Yeoh materials are employed for derivation. The Legendre–Gauss quadrature rule is used for numerical calculation. Several numerical examples in two dimensions are performed and compared with the results from commercial software to verify the validity of the proposed method and show the prospect in solving engineering problems.


Nitsche’s method Multipatch coupling Nonlinear isogeometric analysis Hyperelastic materials 



The work is supported by the Natural Science Foundation of China (Project Nos. 61572056 and 61972011).


  1. 1.
    Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsche’s formulation for interface problems. Comput Methods Appl Mech Eng 225:44–54MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Apostolatos A, Bletzinger KU, Wüchner R (2019) Weak imposition of constraints for structural membranes in transient geometrically nonlinear isogeometric analysis on multipatch surfaces. Comput Methods Appl Mech Eng 350:938–994MathSciNetCrossRefGoogle Scholar
  3. 3.
    Apostolatos A, Schmidt R, Wüchner R, Bletzinger KU (2014) A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. Int J Numer Methods Eng 97(7):473–504MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39(5):1749–1779MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barbosa HJ, Hughes TJ (1991) The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition. Comput Methods Appl Mech Eng 85(1):109–128zbMATHCrossRefGoogle Scholar
  6. 6.
    Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bazilevs Y, Michler C, Calo V, Hughes T (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bazilevs Y, Michler C, Calo V, Hughes T (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199(13–16):780–790MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New YorkzbMATHGoogle Scholar
  10. 10.
    Bouclier R, Passieux JC (2018) A Nitsche-based non-intrusive coupling strategy for global/local isogeometric structural analysis. Comput Methods Appl Mech Eng 340:253–277MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bower AF (2009) Applied mechanics of solids. CRC Press, Boca RatonCrossRefGoogle Scholar
  12. 12.
    Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger KU (2015) Analysis in computer aided design: Nonlinear isogeometric B-Rep analysis of shell structures. Comput Methods Appl Mech Eng 284:401–457MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Brivadis E, Buffa A, Wohlmuth B, Wunderlich L (2015) Isogeometric mortar methods. Comput Methods Appl Mech Eng 284:292–319MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chan CL, Anitescu C, Rabczuk T (2018) Isogeometric analysis with strong multipatch C1-coupling. Comput Aided Geometr Des 62:294–310zbMATHCrossRefGoogle Scholar
  15. 15.
    Chouly F, Fabre M, Hild P, Mlika R, Pousin J, Renard Y (2017) An overview of recent results on Nitsche’s method for contact problems. In: Bordas SPA, Burman EN, Larson MG, Olshanskii MA (eds) Geometrically unfitted finite element methods and applications. Springer, New York, pp 93–141CrossRefGoogle Scholar
  16. 16.
    Coox L, Greco F, Atak O, Vandepitte D, Desmet W (2017) A robust patch coupling method for NURBS-based isogeometric analysis of non-conforming multipatch surfaces. Comput Methods Appl Mech Eng 316:235–260MathSciNetCrossRefGoogle Scholar
  17. 17.
    Coox L, Maurin F, Greco F, Deckers E, Vandepitte D, Desmet W (2017) A flexible approach for coupling NURBS patches in rotationless isogeometric analysis of Kirchhoff–Love shells. Comput Methods Appl Mech Eng 325:505–531MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78(2):229–252MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dornisch W, Stöckler J, Müller R (2017) Dual and approximate dual basis functions for B-splines and NURBS—comparison and application for an efficient coupling of patches with the isogeometric mortar method. Comput Methods Appl Mech Eng 316:449–496MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dornisch W, Vitucci G, Klinkel S (2015) The weak substitution method—an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. Int J Numer Methods Eng 103(3):205–234MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Du X (2019) NLIGA: non-linear isogeometric analysis. Accessed 6 Sept 2019
  22. 22.
    Du X, Zhao G, Wang W (2015) Nitsche method for isogeometric analysis of Reissner–Mindlin plate with non-conforming multi-patches. Comput Aided Geometr Des 35:121–136MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int J Numer Methods Eng 83(7):877–898MathSciNetzbMATHGoogle Scholar
  24. 24.
    Griebel M, Schweitzer MA (2003) A particle-partition of unity method part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, New York, pp 519–542CrossRefGoogle Scholar
  25. 25.
    Guo Y, Heller J, Hughes TJ, Ruess M, Schillinger D (2018) Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the STEP exchange format. Comput Methods Appl Mech Eng 336:39–79MathSciNetCrossRefGoogle Scholar
  26. 26.
    Guo Y, Ruess M (2015) Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures. Comput Methods Appl Mech Eng 284:881–905MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Guo Y, Ruess M, Schillinger D (2017) A parameter-free variational coupling approach for trimmed isogeometric thin shells. Comput Mech 59(4):693–715MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsches method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47–48):5537–5552MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28(2):183–206MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Hesch C, Betsch P (2012) Isogeometric analysis and domain decomposition methods. Comput Methods Appl Mech Eng 213:104–112MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Hibbitt H, Karlsson B, Sorensen P (2011) Abaqus analysis user’s manual version 6.10. Dassault Systèmes Simulia Corp, ProvidenceGoogle Scholar
  32. 32.
    Hu Q, Chouly F, Hu P, Cheng G, Bordas SP (2018) Skew-symmetric Nitsche’s formulation in isogeometric analysis: Dirichlet and symmetry conditions, patch coupling and frictionless contact. Comput Methods Appl Mech Eng 341:188–220MathSciNetCrossRefGoogle Scholar
  33. 33.
    Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Jiang W, Annavarapu C, Dolbow JE, Harari I (2015) A robust Nitsche’s formulation for interface problems with spline-based finite elements. Int J Numer Methods Eng 104(7):676–696MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Kabaria H, Lew AJ, Cockburn B (2015) A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput Methods Appl Mech Eng 283:303–329MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kapl M, Buchegger F, Bercovier M, Jüttler B (2017) Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries. Comput Methods Appl Mech Eng 316:209–234MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kapl M, Sangalli G, Takacs T (2018) Construction of analysis-suitable G1 planar multi-patch parameterizations. Comput Aided Des 97:41–55CrossRefGoogle Scholar
  38. 38.
    Karkon M, Rezaiee-Pajand M (2016) Geometrical nonlinear analysis of plane problems by corotational formulation. J Eng Mech 142(10):04016073CrossRefGoogle Scholar
  39. 39.
    Kiendl J, Bazilevs Y, Hsu MC, Wüchner R, Bletzinger KU (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199(37–40):2403–2416MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Kim NH (2014) Introduction to nonlinear finite element analysis. Springer, New YorkGoogle Scholar
  41. 41.
    Lei Z, Gillot F, Jezequel L (2015) A C0/G1 multiple patches connection method in isogeometric analysis. Appl Math Model 39(15):4405–4420MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mi Y, Zheng H (2018) An interpolation method for coupling non-conforming patches in isogeometric analysis of vibro-acoustic systems. Comput Methods Appl Mech Eng 341:551–570MathSciNetCrossRefGoogle Scholar
  43. 43.
    Mlika R, Renard Y, Chouly F (2017) An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput Methods Appl Mech Eng 325:265–288MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Mostafa M, Sivaselvan M, Felippa C (2013) Reusing linear finite elements in material and geometrically nonlinear analysis—application to plane stress problems. Finite Elem Anal Des 69:62–72MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Nguyen VP, Kerfriden P, Brino M, Bordas SP, Bonisoli E (2014) Nitsche’s method for two and three dimensional NURBS patch coupling. Comput Mech 53(6):1163–1182MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan H, Bazilevs Y, Rabczuk T (2017) Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput Methods Appl Mech Eng 316:1157–1178MathSciNetCrossRefGoogle Scholar
  47. 47.
    Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg 36(1):9–15MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Noels L, Radovitzky R (2006) A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int J Numer Methods Eng 68(1):64–97MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Philipp B, Breitenberger M, D’Auria I, Wüchner R, Bletzinger KU (2016) Integrated design and analysis of structural membranes using the isogeometric B-Rep analysis. Comput Methods Appl Mech Eng 303:312–340MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Piegl L, Tiller W (1997) The NURBS book. Monographs in visual communication. Springer, New YorkzbMATHGoogle Scholar
  51. 51.
    Rogers DF (2000) An introduction to NURBS: with historical perspective. Elsevier, AmsterdamGoogle Scholar
  52. 52.
    Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int J Numer Methods Eng 95(10):811–846MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Ruess M, Schillinger D, Oezcan AI, Rank E (2014) Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Comput Methods Appl Mech Eng 269:46–71MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Schillinger D, Harari I, Hsu MC, Kamensky D, Stoter SK, Yu Y, Zhao Y (2016) The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements. Comput Methods Appl Mech Eng 309:625–652MathSciNetCrossRefGoogle Scholar
  55. 55.
    Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCs. ACM Trans Graph TOG 22(3):477–484CrossRefGoogle Scholar
  56. 56.
    Seitz A, Wall WA, Popp A (2019) Nitsches method for finite deformation thermomechanical contact problems. Comput Mech 63(6):1091–1110MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Ten Eyck A, Lew A (2006) Discontinuous Galerkin methods for non-linear elasticity. Int J Numer Methods Eng 67(9):1204–1243MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Wriggers P (2008) Nonlinear finite element methods. Springer, New YorkzbMATHGoogle Scholar
  59. 59.
    Xu G, Kwok TH, Wang CC (2017) Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization. Comput Aided Des 91:1–13CrossRefGoogle Scholar
  60. 60.
    Xu G, Li M, Mourrain B, Rabczuk T, Xu J, Bordas SP (2018) Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization. Comput Methods Appl Mech Eng 328:175–200MathSciNetCrossRefGoogle Scholar
  61. 61.
    Yamamoto T, Yamada T, Matsui K (2019) Numerical procedure to couple shell to solid elements by using Nitsches method. Comput Mech 63(1):69–98MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Zhao G, Du X, Wang W, Liu B, Fang H (2017) Application of isogeometric method to free vibration of Reissner–Mindlin plates with non-conforming multi-patch. Comput Aided Des 82:127–139MathSciNetCrossRefGoogle Scholar
  63. 63.
    Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, AmsterdamzbMATHGoogle Scholar
  64. 64.
    Zou Z, Aquino W, Harari I (2017) Nitsche’s method for helmholtz problems with embedded interfaces. Int J Numer Methods Eng 110(7):618–636MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Zou Z, Scott M, Borden M, Thomas D, Dornisch W, Brivadis E (2018) Isogeometric Bézier dual mortaring: refineable higher-order spline dual bases and weakly continuous geometry. Comput Methods Appl Mech Eng 333:497–534CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationBeihang UniversityBeijingChina
  2. 2.Department of Mechanical Engineering and Engineering ScienceThe University of North Carolina at CharlotteCharlotteUSA

Personalised recommendations