Advertisement

Anatomically realistic lumen motion representation in patient-specific space–time isogeometric flow analysis of coronary arteries with time-dependent medical-image data

  • Yuxuan YuEmail author
  • Yongjie Jessica Zhang
  • Kenji Takizawa
  • Tayfun E. Tezduyar
  • Takafumi Sasaki
Original Paper
  • 80 Downloads

Abstract

Patient-specific computational flow analysis of coronary arteries with time-dependent medical-image data can provide valuable information to doctors making treatment decisions. Reliable computational analysis requires a good core method, high-fidelity space and time discretizations, and an anatomically realistic representation of the lumen motion. The space–time variational multiscale (ST-VMS) method has a good track record as a core method. The ST framework, in a general context, provides higher-order accuracy. The VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow in the artery. The moving-mesh feature of the ST framework enables high-resolution flow computation near the moving fluid–solid interfaces. The ST isogeometric analysis is a superior discretization method. With IGA basis functions in space, it enables more accurate representation of the lumen geometry and increased accuracy in the flow solution. With IGA basis functions in time, it enables a smoother representation of the lumen motion and a mesh motion consistent with that. With cubic NURBS in time, we obtain a continuous acceleration from the lumen-motion representation. Here we focus on making the lumen-motion representation anatomically realistic. We present a method to obtain from medical-image data in discrete form an anatomically realistic NURBS representation of the lumen motion, without sudden, unrealistic changes introduced by the higher-order representation. In the discrete projection from the medical-image data to the NURBS representation, we supplement the least-squares terms with two penalty terms, corresponding to the first and second time derivatives of the control-point trajectories. The penalty terms help us avoid the sudden unrealistic changes. The computation we present demonstrates the effectiveness of the method.

Keywords

Coronary arteries Patient-specific computational flow analysis Time-dependent medical-image data Space–time variational multiscale method Space–time isogeometric analysis Anatomically realistic lumen motion Penalty spline 

Notes

Acknowledgements

Y. Yu and Y.J. Zhang were supported in part by NSF CAREER Award OCI-1149591. This work was also supported (K. Takizawa and T. Sasaki) in part by JST-CREST; Grant-in-Aid for Scientific Research (A) 18H04100 from Japan Society for the Promotion of Science; and Rice–Waseda research agreement. It was also supported (T.E. Tezduyar) in part by Top Global University Project of Waseda University.

References

  1. 1.
    Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053zbMATHCrossRefGoogle Scholar
  2. 2.
    Arbab-Zadeh A, Nakano M, Virmani R, Fuster V (2012) Acute coronary events. Circulation 125(9):1147–1156CrossRefGoogle Scholar
  3. 3.
    McGovern PG, Pankow JS, Shahar E, Doliszny KM, Folsom AR, Blackburn H, Luepker RV (1996) Recent trends in acute coronary heart diseasemortality, morbidity, medical care, and risk factors. N Engl J Med 334(14):884–890CrossRefGoogle Scholar
  4. 4.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Computation of cardiovascular fluid–structure interactions with the DSD/SST method. In: Proceedings of the 6th world congress on computational mechanics (CD-ROM). Beijing, ChinaGoogle Scholar
  5. 5.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulations. Trans Jpn Soc Mech Eng Ser A 70:1224–1231 in JapaneseCrossRefGoogle Scholar
  6. 6.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195:1885–1895MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gijsen FJH, Wentzel JJ, Thury A, Mastik F, Schaar JA, Schuurbiers JC, Slager CJ, van der Giessen WJ, de Feyter PJ, van der Steen AF, Serruys PW (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol 295(4):H1608–H1614CrossRefGoogle Scholar
  8. 8.
    Slager CJ, Wentzel JJ, Gijsen FJH, Thury A, der Wal ACV, Schaar JA, Serruys PW (2005) The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Practice Cardiovasc Med 2(9):456–464CrossRefGoogle Scholar
  9. 9.
    Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247–267MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Takizawa K, Tezduyar TE (2012) Space–time fluid-structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903zbMATHCrossRefGoogle Scholar
  13. 13.
    Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 142:15–20MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetzbMATHGoogle Scholar
  16. 16.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space–time finite elements: solution techniques. Int J Numer Meth Fluids 54:855–900zbMATHCrossRefGoogle Scholar
  18. 18.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242zbMATHCrossRefGoogle Scholar
  20. 20.
    Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387–401MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799zbMATHCrossRefGoogle Scholar
  22. 22.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Hoboken. ISBN 978-0470978771zbMATHCrossRefGoogle Scholar
  24. 24.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321–332zbMATHCrossRefGoogle Scholar
  26. 26.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2012) Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust. Comput Mech 50:743–760zbMATHCrossRefGoogle Scholar
  29. 29.
    Takizawa K, Kostov N, Puntel A, Henicke B, Tezduyar TE (2012) Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle. Comput Mech 50:761–778zbMATHCrossRefGoogle Scholar
  30. 30.
    Takizawa K, Tezduyar TE (2014) Space-time computation techniques with continuous representation in time (ST-C). Comput Mech 53:91–99MathSciNetCrossRefGoogle Scholar
  31. 31.
    Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations. Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 159–178. ISBN 978-3-319-40825-5zbMATHCrossRefGoogle Scholar
  32. 32.
    Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Takizawa K, Tezduyar TE, Hattori H (2017) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Komiya K, Kanai T, Otoguro Y, Kaneko M, Hirota K, Zhang Y, Takizawa K, Tezduyar TE, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Computational analysis of flow-driven string dynamics in a pump and residence time calculation. In: IOP conference series earth and environmental science, vol 240, p 062014Google Scholar
  35. 35.
    Kanai T, Takizawa K, Tezduyar TE, Komiya K, Kaneko M, Hirota K, Nohmi M, Tsuneda T, Kawai M, Isono M (2019) Methods for computation of flow-driven string dynamics in a pump and residence time. Math Models Methods Appl Sci 29:839–870MathSciNetCrossRefGoogle Scholar
  36. 36.
    Takizawa K, Henicke B, Puntel A, Kostov N, Tezduyar TE (2013) Computer modeling techniques for flapping-wing aerodynamics of a locust. Comput Fluids 85:125–134MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Takizawa K, Tezduyar TE, Kostov N (2014) Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV. Comput Mech 54:213–233MathSciNetCrossRefGoogle Scholar
  38. 38.
    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space-time methods. Arch Comput Methods Eng 21:481–508MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Takizawa K (2014) Computational engineering analysis with the new-generation space-time methods. Comput Mech 54:193–211MathSciNetCrossRefGoogle Scholar
  40. 40.
    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Takizawa K, Tezduyar TE, Buscher A (2015) Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141CrossRefGoogle Scholar
  42. 42.
    Takizawa K, Montes D, Fritze M, McIntyre S, Boben J, Tezduyar TE (2013) Methods for FSI modeling of spacecraft parachute dynamics and cover separation. Math Models Methods Appl Sci 23:307–338MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Takizawa K, Tezduyar TE, McIntyre S, Kostov N, Kolesar R, Habluetzel C (2014) Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput Mech 53:1–15zbMATHCrossRefGoogle Scholar
  44. 44.
    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 253–336. ISBN 978-3-319-96468-3CrossRefGoogle Scholar
  47. 47.
    Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis. Arch Comput Methods Eng 26:1059–1099MathSciNetCrossRefGoogle Scholar
  48. 48.
    Otoguro Y, Takizawa K, Tezduyar TE (2017) Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput Fluids 158:189–200MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018. Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 399–434. ISBN 978-3-319-96468-3CrossRefGoogle Scholar
  50. 50.
    Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Mei S (2019) Turbocharger turbine and exhaust manifold flow computation with the space–time variational multiscale method and isogeometric analysis. Comput Fluids 179:764–776MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Torii R, Keegan J, Wood NB, Dowsey AW, Hughes AD, Yang G-Z, Firmin DN, Thom SAM, Xu XY (2010) MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Ann Biomed Eng 38:2606–2620CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943–2959MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Urick B, Sanders TM, Hossain SS, Zhang YJ, Hughes TJR (2019) Review of patient-specific vascular modeling: template-based isogeometric framework and the case for CAD. Arch Comput Methods Eng 26(2):381–404 CrossRefGoogle Scholar
  54. 54.
    Zhang YJ, Bajaj C, Xu G (2009) Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Commun Numer Methods Eng 25(1):1–18MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Eilers PHC, Marx BD (1996) Flexible smoothing with B-splines and penalties. Stat Sci 11(2):89–102MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Wells RE Jr, Merrill EW (1961) Shear rate dependence of the viscosity of whole blood and plasma. Science 133(3455):763–764CrossRefGoogle Scholar
  57. 57.
    Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Meth Fluids 54:995–1009MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Meth Fluids 43:555–575MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Takizawa K, Tezduyar TE, Otoguro Y (2018) Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput Mech 62:1169–1186MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Kuraishi T, Takizawa K, Tezduyar TE (2019) Tire aerodynamics with actual tire geometry, road contact and tire deformation. Comput Mech 63:1165–1185MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563CrossRefGoogle Scholar
  63. 63.
    Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101–116zbMATHCrossRefGoogle Scholar
  64. 64.
    Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Meth Fluids 54:901–922zbMATHCrossRefGoogle Scholar
  65. 65.
    Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46:31–41MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Modern Mechanical EngineeringWaseda UniversityTokyoJapan
  3. 3.Mechanical EngineeringRice UniversityHoustonUSA
  4. 4.Faculty of Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations