Skip to main content
Log in

A constrained spline dynamics (CSD) method for interactive simulation of elastic rods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we present constrained spline dynamics (CSD) as a unified framework for the elastodynamic simulation of elastic rods subjected to constraints at interactive rates. The geometry of the rod and its kinematics are discretized using smooth spline functions and the rod’s centerline co-ordinates as degrees of freedom. Interpolating B-spline shape functions are used to take advantage of the smooth basis and the Kronecker delta property. The formulation is developed from Hamilton’s principle with bending and twisting energies represented as compliant constraints. The bend–twist coupled behavior is modeled using the concept of holonomy of curves utilizing the smooth and accurate curvature and bi-normal vector fields, eliminating rotational director frames as degrees of freedom. By enforcing uniform arc-length parametrization, high accuracy is achieved in modeling bend, twist, and bend–twist coupling. Several numerical examples are presented that demonstrate the convergence behavior, computational accuracy and efficiency of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Hadap S, Magnenat-Thalmann N (2001) Modeling dynamic hair as a continuum. Comput Graph Forum 20(3):329–338

    Article  Google Scholar 

  2. Anjyo K-I, Usami Y, Kurihara T (1992) A simple method for extracting the natural beauty of hair. In: SIGGRAPH 92 proceedings of the 19th annual conference on computer graphics interactive techniques, vol 26, no 2, pp 111–120

  3. Qi D, Panneerselvam K, Ahn W, Arikatla V, Enquobahrie A, De S (2017) Virtual interactive suturing for the fundamentals of laparoscopic surgery (FLS). J Biomed Inform 75:48–62

    Article  Google Scholar 

  4. Grégoire M, Schömer E (2007) Interactive simulation of one-dimensional flexible parts. Comput Aided Des 39(8):694–707

    Article  Google Scholar 

  5. Selle A, Lentine M, Fedkiw R (2008) A mass spring model for hair simulation. ACM Trans Graph 27(3):64:1–64:11

    Article  Google Scholar 

  6. Umetani N, Schmidt R, Stam J (2014) Position-based elastic rods. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation, pp 21–30

  7. Lenoir J, Meseure P, Grisoni L, Chaillou C (2003) Surgical thread simulation. ESAIM Proc 12:102–107

    Article  Google Scholar 

  8. Theetten A, Grisoni L, Andriot C, Barsky B (2008) Geometrically exact dynamic splines. CAD Comput Aided Des 40(1):35–48

    Article  Google Scholar 

  9. Choe B, Choi MG, Ko H-S (2005) Simulating complex hair with robust collision handling. In: Proceedings of the 2005 ACM SIGGRAPH/eurographics symposium on computer animation, pp 153–160

  10. Pai DK (2002) STRANDS: Interactive simulation of thin solids using Cosserat models. Comput Graph Forum 21(3):347–352

    Article  Google Scholar 

  11. Antman SS (1995) The special Cosserat theory of rods. In: Antman SS (ed) Nonlinear problems of elasticity. Springer, New York, pp 259–324

    Chapter  Google Scholar 

  12. Spillmann J, Teschner M (2007) CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In: Eurographics/ACM SIGGRAPH symposium on computer animation, pp 1–10

  13. Bishop RL (1975) There is more than one way to frame a curve. Am Math Mon 82(3):246–251

    Article  MathSciNet  Google Scholar 

  14. Langer J, Singer DA (1996) Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev 38(4):605–618

    Article  MathSciNet  Google Scholar 

  15. Bergou M, Wardetzky M, Robinson S, Audoly B, Grinspun E (2008) Discrete elastic rods. ACM Trans Graph 27(3):63:1–63:12

    Article  Google Scholar 

  16. Weeger O, Yeung SK, Dunn ML (2017) Isogeometric collocation methods for Cosserat rods and rod structures. Comput Methods Appl Mech Eng 316:100–122

    Article  MathSciNet  Google Scholar 

  17. Weiss H (2002) Dynamics of geometrically nonlinear rods: I. Nonlinear Dyn 30:383–415

    Article  Google Scholar 

  18. Boyer F, Primault D (2004) Finite element of slender beams in finite transformations: a geometrically exact approach. Int J Numer Methods Eng 59(5):669–702

    Article  MathSciNet  Google Scholar 

  19. Meier C, Popp A, Wall WA (2014) An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput Methods Appl Mech Eng 278:445–478

    Article  MathSciNet  Google Scholar 

  20. Meier C, Popp A, Wall WA (2015) A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods. Comput Methods Appl Mech Eng 290:314–341

    Article  MathSciNet  Google Scholar 

  21. Grinspun E, Secord A (2008) Introduction to discrete differential geometry: the geometry of plane curves. In: Proceeding SIGGRAPH Asia’08 ACM SIGGRAPH ASIA, pp 5:1–5:4

  22. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. SIGGRAPH Comput Graph 21(4):205–214

    Article  Google Scholar 

  23. Qin H, Terzopoulos D (1996) D-NURBS: a physics-based framework for geometric design. IEEE Trans Vis Comput Graph 2(1):85–96

    Article  Google Scholar 

  24. Rémion Y, Nourrit J-M, Gillard D (2000) A dynamic animation engine for generic spline objects. J Vis Comput Animat 11(1):17–26

    Article  Google Scholar 

  25. Lenoir J, Meseure P, Grisoni L, Chaillou C (2004) A suture model for surgical simulation. In: International symposium on medical simulation, pp 105–113, 2004

    Chapter  Google Scholar 

  26. Greco L, Cuomo M (2013) B-spline interpolation of Kirchhoff–Love space rods. Comput Methods Appl Mech Eng 256:251–269

    Article  MathSciNet  Google Scholar 

  27. Levien RL (2009) From spiral to spline: optimal techniques in interactive curve design. Ph.D. dissertation, Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA

  28. De Boor C (2001) A practical guide to splines. Springer, Berlin

    MATH  Google Scholar 

  29. Kühnel W (2005) differential geometry: curves - surfaces - manifolds, 2nd edn. American Mathematical Society, Providence

    MATH  Google Scholar 

  30. Muller M, Heidelberger B, Hennix M, Ratcliff J (2007) Position based dynamics. J Vis Commun Image Represent 18(2):109–118

    Article  Google Scholar 

  31. Macklin M, Müller M, Chentanez N (2016) XPBD: Position-based simulation of compliant constrained dynamics. In: Proceedings of the 9th international conference on motion games— MIG’16, pp 49–54

  32. Tournier M, Nesme M, Gilles B, Faure F (2015) Stable constrained dynamics. ACM Trans Graph 34(4):132:1–132:10

    Article  Google Scholar 

  33. Baraff D (1996) Linear-time dynamics using Lagrange multipliers. In: SIGGRAPH’96 Proceedings of the 23rd annual conference computer graphics and interactive techniques, pp 137–146

  34. Lacoursière C (2007) Regularized, stabilized, variational methods for multibodies. In: 48th Scandinavian conference on simulation and modeling (SIMS 2007), vol 27, pp 40–48

  35. Servin M, Lacoursière C, Melin N, Lacoursiere C, Melin N (2006) Interactive simulation of elastic deformable materials. In: SIGRAD 2006 conference proceedings, pp. 22–32

  36. Piegl W, Les A, Tiller W (1997) The {NURBS} book. Springer, Berlin

    Book  Google Scholar 

  37. Demko S (1977) Inverses of band matrices and local convergence of spline projections. Soc Ind Appl Math 14(4):616–619

    MathSciNet  MATH  Google Scholar 

  38. Wardetzky M, Bergou M, Robinson S, Audoly B, Grinspun E (2008) Geometric aspects of discrete elastic rods. In: ACM transactions on graphics (TOG), pp 1–3

  39. De Vries R (2005) Evaluating changes of writhe in computer simulations of supercoiled DNA. J Chem Phys 122(6):064905

    Article  Google Scholar 

  40. Cook RD, Malkus DS, Plesha ME (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    MATH  Google Scholar 

  41. Börm S, Grasedyck L, Hackbusch W (2003) Introduction to hierarchical matrices with applications. Eng Anal Bound Elem 27(5):405–422

    Article  Google Scholar 

  42. Xia J (2013) Randomized sparse direct solvers. SIAM J Matrix Anal Appl 34(1):197–227

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this study by the following NIH/NIBIB Grant Number: 1R01EB014305. Discussions with Kartik Josyula are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvranu De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 124 kb)

Supplementary material 2 (MP4 124 kb)

Supplementary material 3 (MP4 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panneerselvam, K., Rahul & De, S. A constrained spline dynamics (CSD) method for interactive simulation of elastic rods. Comput Mech 65, 269–291 (2020). https://doi.org/10.1007/s00466-019-01768-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01768-2

Keywords

Navigation