A mixed finite element model with enhanced zigzag kinematics for the non-linear analysis of multilayer plates

  • Max KöppleEmail author
  • Werner Wagner
Original Paper


In the present work, a non-linear finite element model for the analysis of composite and sandwich plates is proposed. The underlying variational formulation is based on the kinematics of the refined zigzag theory (RZT) as well as on a modified version of the two-field Hellinger–Reissner (HR) functional, where the displacements and the transverse shear stresses are involved as independent field variables. In fact, a consistent expression for each shear stress function is obtained by integrating the local equilibrium equations written in terms of derivated strain components. Regardless of the number of material layers, the proposed four-node plate element, which is labeled HR–RZT, exhibits only seven nodal degrees of freedom. The additionally introduced variables are effectively eliminated on the element level. One key advantage of the HR–RZT formulation is the fact that interlayer-continuity of the transverse shear stresses is automatically obtained without resorting to any post-processing procedures. The same applies to the zero stress conditions at the outer surfaces of the laminate. Further, due to the enhanced kinematics, the layerwise distortion of the laminate’s cross-section can also be accurately captured. The performance of the novel element formulation is studied by several numerical applications, where the solutions of the two-dimensional HR–RZT elements are verified by comparison with fully three-dimensional finite element models.


Nonlinear plate element Composite and sandwich plates Hellinger–Reissner variational principle Transverse shear stresses Refined zigzag theory 



  1. 1.
    Altenbach H, Altenbach J, Kissing W (2018) Mechanics of composite structural elements. Springer, SingaporeCrossRefGoogle Scholar
  2. 2.
    Ambartsumian S (1958) On a general theory of anisotropic shells. J Appl Math Mech 22(2):305–319MathSciNetCrossRefGoogle Scholar
  3. 3.
    Auricchio F, Sacco E (1999) A mixed-enhanced finite-element for the analysis of laminated composite plates. Int J Numer Methods Eng 44(10):1481–1504zbMATHCrossRefGoogle Scholar
  4. 4.
    Auricchio F, Sacco E (2003) Refined first-order shear deformation theory models for composite laminates. J Appl Mech 70(3):381–390zbMATHCrossRefGoogle Scholar
  5. 5.
    Auricchio F, Balduzzi G, Khoshgoftar M, Rahimi G, Sacco E (2014) Enhanced modeling approach for multilayer anisotropic plates based on dimension reduction method and Hellinger–Reissner principle. Compos Struct 118:622–633CrossRefGoogle Scholar
  6. 6.
    Averill R (1994) Static and dynamic response of moderately thick laminated beams with damage. Compos Eng 4(4):381–395CrossRefGoogle Scholar
  7. 7.
    Brank B, Carrera E (2000) Multilayered shell finite element with interlaminar continuous shear stresses: a refinement of the Reissner–Mindlin formulation. Int J Numer Methods Eng 48(6):843–874zbMATHCrossRefGoogle Scholar
  8. 8.
    Carrera E (1996) \(C^0\) Reissner–Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity. Int J Numer Methods Eng 39(11):1797–1820zbMATHCrossRefGoogle Scholar
  9. 9.
    Carrera E (1997) \(c_z^0\) requirements—models for the two dimensional analysis of multilayered structures. Compos Struct 37(3–4):373–383CrossRefGoogle Scholar
  10. 10.
    Carrera E (1998) Evaluation of layerwise mixed theories for laminated plates analysis. AIAA J 36(5):830–839CrossRefGoogle Scholar
  11. 11.
    Carrera E (2000) A priori vs. a posteriori evaluation of transverse stresses in multilayered orthotropic plates. Compos Struct 48(4):245–260CrossRefGoogle Scholar
  12. 12.
    Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon pvd and rmvt. Part 1: derivation of finite element matrices. Int J Numer Methods Eng 55(2):191–231zbMATHCrossRefGoogle Scholar
  13. 13.
    Carrera E, Demasi L (2002) Classical and advanced multilayered plate elements based upon PVD and RMVT. Part 2: numerical implementations. Int J Numer Methods Eng 55(3):253–291zbMATHCrossRefGoogle Scholar
  14. 14.
    Carrera E (2002) Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch Comput Methods Eng 9(2):87–140MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Carrera E (2003) Historical review of zig-zag theories for multilayered plates and shells. Appl Mech Rev 56(3):287–308MathSciNetCrossRefGoogle Scholar
  16. 16.
    Carrera E (2003) Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Arch Comput Methods Eng 10(3):215–296MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Carrera E (2004) On the use of the murakami’s zig-zag function in the modeling of layered plates and shells. Comput Struct 82(7–8):541–554CrossRefGoogle Scholar
  18. 18.
    Di Sciuva M (1986) Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J Sound Vib 105(3):425–442CrossRefGoogle Scholar
  19. 19.
    Di Sciuva M (1987) An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates. J Appl Mech 54(3):589–596zbMATHCrossRefGoogle Scholar
  20. 20.
    Di Sciuva M (1992) Multilayered anisotropic plate models with continuous interlaminar stresses. Compos Struct 22(3):149–167CrossRefGoogle Scholar
  21. 21.
    Dvorkin E, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88CrossRefGoogle Scholar
  22. 22.
    Eijo A, Oñate E, Oller S (2013) A four-noded quadrilateral element for composite laminated plates/shells using the refined zigzag theory. Int J Numer Methods Eng 95(8):631–660MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gherlone M, Tessler A, Di Sciuva M (2011) \(C^0\) beam elements based on the refined zigzag theory for multilayered composite and sandwich laminates. Compos Struct 93(11):2882–2894CrossRefGoogle Scholar
  24. 24.
    Gruttmann F, Wagner W, Meyer L, Wriggers P (1993) A nonlinear composite shell element with continuous interlaminar shear stresses. Comput Mech 13(3):175–188zbMATHCrossRefGoogle Scholar
  25. 25.
    Gruttmann F, Wagner W (1994) On the numerical analysis of local effects in composite structures. Compos Struct 29(1):1–12CrossRefGoogle Scholar
  26. 26.
    Gruttmann F, Wagner W, Knust G (2016) A coupled global-local shell model with continuous interlaminar shear stresses. Comput Mech 57(2):237–255MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Gruttmann F, Wagner W (2017) Shear correction factors for layered plates and shells. Comput Mech 59(1):129–146MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gruttmann F, Knust G, Wagner W (2017) Theory and numerics of layered shells with variationally embedded interlaminar stresses. Comput Methods Appl Mech Eng 326:713–738MathSciNetCrossRefGoogle Scholar
  29. 29.
    Iurlaro L, Gherlone M, Di Sciuva M, Tessler A (2015) Refined zigzag theory for laminated composite and sandwich plates derived from Reissner’s mixed variational theorem. Compos Struct 133:809–817CrossRefGoogle Scholar
  30. 30.
    Kant T, Manjunatha B (1994) On accurate estimation of transverse stresses in multilayer laminates. Comput Struct 50(3):351–365CrossRefGoogle Scholar
  31. 31.
    Kant T, Swaminathan K (2002) Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos Struct 56(4):329–344CrossRefGoogle Scholar
  32. 32.
    Klinkel S, Gruttmann F, Wagner W (1999) A continuum based three-dimensional shell element for laminated structures. Comput Struct 71(1):43–62CrossRefGoogle Scholar
  33. 33.
    Klinkel S, Gruttmann F, Wagner W (2006) A robust non-linear solid shell element based on a mixed variational formulation. Comput Methods Appl Mech Eng 195(1):179–201zbMATHCrossRefGoogle Scholar
  34. 34.
    Malkus D, Hughes T (1978) Mixed finite element methods-reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15(1):63–81zbMATHCrossRefGoogle Scholar
  35. 35.
    Murakami H (1986) Laminated composite plate theory with improved in-plane responses. J Appl Mech 53(3):661–666zbMATHCrossRefGoogle Scholar
  36. 36.
    Oñate E, Eijo A, Oller S (2012) Simple and accurate two-noded beam element for composite laminated beams using a refined zigzag theory. Comput Methods Appl Mech Eng 213:362–382CrossRefGoogle Scholar
  37. 37.
    Reddy J (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752zbMATHCrossRefGoogle Scholar
  38. 38.
    Reddy J, Robbins D (1994) Theories and computational models for composite laminates. Appl Mech Rev 47(6):147–169CrossRefGoogle Scholar
  39. 39.
    Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Rolfes R, Rohwer K (1997) Improved transverse shear stresses in composite finite elements based on first order shear deformation theory. Int J Numer Methods Eng 40(1):51–60CrossRefGoogle Scholar
  41. 41.
    Rolfes R, Noor A, Sparr H (1998) Evaluation of transverse thermal stresses in composite plates based on first-order shear deformation theory. Comput Methods Appl Mech Eng 167(3–4):355–368zbMATHCrossRefGoogle Scholar
  42. 42.
    Schürg M, Wagner W, Gruttmann F (2009) An enhanced fsdt model for the calculation of interlaminar shear stresses in composite plate structures. Comput Mech 44(6):765–776zbMATHCrossRefGoogle Scholar
  43. 43.
    Taylor R (2019) FEAP-A finite element analysis program.
  44. 44.
    Tessler A, Hughes T (1985) A three-node mindlin plate element with improved transverse shear. Comput Methods Appl Mech Eng 50(1):71–101zbMATHCrossRefGoogle Scholar
  45. 45.
    Tessler A, Di Sciuva M, Gherlone M (2009) A refined zigzag beam theory for composite and sandwich beams. J Compos Mater 43(9):1051–1081CrossRefGoogle Scholar
  46. 46.
    Tessler A, Di Sciuva M, Gherlone M (2010) A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics. J Mech Mater Struct 5(2):341–367CrossRefGoogle Scholar
  47. 47.
    Tessler A (2015) Refined zigzag theory for homogeneous, laminated composite, and sandwich beams derived from Reissner’s mixed variational principle. Meccanica 50(10):2621–2648MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Toledano A, Murakami H (1987) A composite plate theory for arbitrary laminate configurations. J Appl Mech 54(1):181–189zbMATHCrossRefGoogle Scholar
  49. 49.
    Versino D, Gherlone M, Mattone M, Di Sciuva M, Tessler A (2013) \(C^0\) triangular elements based on the refined zigzag theory for multilayer composite and sandwich plates. Compos B Eng 44(1):218–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für BaustatikKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations