A computational approach to design new tests for viscoplasticity characterization at high strain-rates

  • Pascal Bouda
  • Bertrand LangrandEmail author
  • Delphine Notta-Cuvier
  • Eric Markiewicz
  • Fabrice Pierron
Original Paper


Rate-dependent behaviour characterization of metals at high strain rate remains challenging mainly because of the strong hypotheses when tests are processed with statically determinate approaches. As a non-standard methodology, Image-Based Inertial Impact (IBII) test has been proposed to take advantage of the dynamic Virtual Fields Method (VFM) which enables the identification of constitutive parameters with strain and acceleration fields. However, most of the test parameters (e.g. projectile velocity, specimen geometry) are not constrained. Therefore, an FE-based approach is addressed to optimize the identification over a wide range of strain and strain-rate, according to two design criteria: (1) the characterized viscoplastic spectra, (2) the identifiability of the parameters. Whereas the first criterion is assessed by processing the FEA simulations, the second is rated extracting material parameters using synthetic images to input the VFM. Finally, uncertainties regarding the identification of material constants are quantified for each IBII test configuration and different camera performances.


Virtual field method Impact Optimization Viscoplasticity Testing 



The authors are grateful to Onera and the Région Hauts-de-France for cofunding this project. Prof. Pierron acknowledges support by EPSRC through Grant EP/L026910/1.


  1. 1.
    ASTM E8 - 04 (2004) Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PAGoogle Scholar
  2. 2.
    Markiewicz E, Langrand B, Notta-Cuvier D (2017) A review of characterisation and parameters identification of materials constitutive and damage models: from normalised direct approach to most advanced inverse problem resolution. Int J Impact Eng 110:371–381CrossRefGoogle Scholar
  3. 3.
    Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402CrossRefGoogle Scholar
  4. 4.
    Grédiac M, Hild F (2012) Full-field measurements and identification in solid mechanics. ISTE. Wiley, HobokenGoogle Scholar
  5. 5.
    Pierron F, Grédiac M (2012) The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Moulart R, Pierron F, Hallett SR, Wisnom MR (2011) Full-field strain measurement and identification of composites moduli at high strain rate with the virtual fields method. Exp Mech 51:509–536CrossRefGoogle Scholar
  7. 7.
    Notta-Cuvier D, Langrand B, Markiewicz E, Lauro F, Portemont G (2013) Identification of Johnson–Cook’s viscoplastic model parameters using the virtual fields method: application to titanium alloy Ti6Al4V. Strain 49:22–45CrossRefGoogle Scholar
  8. 8.
    Valeri G, Koohbor B, Kidane A, Sutton MA (2017) Determining the tensile response of materials at high temperature using DIC and the virtual fields method. Opt Lasers Eng 91:53–61CrossRefGoogle Scholar
  9. 9.
    Koohbor B, Kidane A, Sutton MA, Zhao X, Mallon S (2017) Analysis of dynamic bending test using ultra high speed DIC and the virtual fields method. Int J Impact Eng 110:299–310 Special Issue in honor of Seventy Fifth Birthday of Professor N. K. GuptaCrossRefGoogle Scholar
  10. 10.
    Koohbor B, Kidane A, Sutton MA, Zhao X, Mallon S (2018) Corrigendum to “analysis of dynamic bending test using ultra high speed DIC and the virtual fields method” [Int. J. Impact Eng. 110, (2017) 299–310]. Int J Impact Eng 116:127–128CrossRefGoogle Scholar
  11. 11.
    Pierron F, Sutton MA, Tiwari V (2010) Ultra high speed DIC and virtual fields method analysis of a three point bending impact test on a aluminium bar. Exp Mech 51:537–563CrossRefGoogle Scholar
  12. 12.
    Pierron F, Zhu H, Siviour C (2014) Beyond Hopkinson’s bar. Philos Trans R Soc Lond A Math Phys Eng Sci 372:20130195CrossRefGoogle Scholar
  13. 13.
    Dreuilhe S (2017) Development of novel inertial tests for the identification of non-linear material model parameters at high strain rates. Ph.D. thesis, University of SouthamptonGoogle Scholar
  14. 14.
    Lemaitre J, Chaboche JL (1994) Mechanics of solid materials. Cambridge University Press, CambridgezbMATHGoogle Scholar
  15. 15.
    Zerilli FJ, Armstrong RW (1987) Dislocation mechanics based constitutive relations for material dynamics calculations. J Appl Phys 61(5):1816–1825CrossRefGoogle Scholar
  16. 16.
    Rusinek A, Klepaczko JR (2001) Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plast 17(1):87–115CrossRefGoogle Scholar
  17. 17.
    Cowper GR, Symonds PS (1957) Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Technical report (Brown University. Division of Applied Mathematics). Division of Applied Mathematics, Brown UniversityGoogle Scholar
  18. 18.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th international symposium on Balistics, The Hague, The Netherlands, pp 541–547Google Scholar
  19. 19.
    Jones Norman (1990) Structural impact. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. 20.
    Holmquist TJ, Johnson GR (1991) Determination of constants and comparison of results for various constitutive models. J. Phys. IV France 01:C3–853–C3–860Google Scholar
  21. 21.
    Borvik T, Langseth M, Hopperstad OS, Malo KA (1999) Ballistic penetration of steel plates. Int J Impact Eng 22:855–886CrossRefGoogle Scholar
  22. 22.
    Gupta AK, Krishnamurthy HN, Puranik P, Singh SK, Balu A (2014) An exponential strain dependent Rusinek–Klepaczko model for flow stress prediction in austenitic stainless steel 304 at elevated temperatures. J Mater Res Technol 3(4):370–377CrossRefGoogle Scholar
  23. 23.
    Iqbal MA, Senthil K, Sharma P, Gupta NK (2016) An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. Int J Impact Eng 96:146–164CrossRefGoogle Scholar
  24. 24.
    Meyer HW Jr, Kleponis DS (2001) Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int J Impact Eng 26:509–521CrossRefGoogle Scholar
  25. 25.
    Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38:406–415CrossRefGoogle Scholar
  26. 26.
    Mocko W, Brodecki A (2015) Application of optical field analysis of tensile tests for calibration of the Rusinek–Klepaczko constitutive relation of Ti6Al4V titanium alloy. Mater Des 88:320–330CrossRefGoogle Scholar
  27. 27.
    Hopkinson B (1914) A method of measuring the pressure produced in the detonation of high explosives of by the impact of bullets. Philos Trans R Soc A 213:437–456CrossRefGoogle Scholar
  28. 28.
    Nicholas T (1981) Tensile testing of materials at high rates of strain. Exp Mech 21(5):177–185CrossRefGoogle Scholar
  29. 29.
    Avril S, Pierron F, Sutton MA, Yan J (2008) Identification of elasto-visco-plastic parameters and characterization of Lüders behavior using digital image correlation and the virtual fields method. Mech Mater 40:729–742CrossRefGoogle Scholar
  30. 30.
    Pierron F, Avril S, Tran VT (2010) Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening. Int J Solids Struct 47:2993–3010CrossRefzbMATHGoogle Scholar
  31. 31.
    Notta-Cuvier D, Langrand B, Lauro F, Markiewicz E (2015) An innovative procedure for characterising a coupled elastoplastic damage model of behaviour using the virtual fields method. Int J Solids Struct 69–70:415–427CrossRefGoogle Scholar
  32. 32.
    Pierron F, Forquin P (2012) Ultra-high-speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain 48:388–405CrossRefGoogle Scholar
  33. 33.
    Yoon S-H, Winters M, Siviour CR (2016) High strain-rate tensile characterization of EPDM rubber using non-equilibrium loading and the virtual fields method. Exp Mech 56:25–25CrossRefGoogle Scholar
  34. 34.
    Fletcher L, Pierron F (2018) An image-based inertial impact (IBII) test for tungsten carbide cermets. J Dyn Behav Mater 4:481–504CrossRefGoogle Scholar
  35. 35.
    Van Blitterswyk J, Fletcher L, Pierron F (2018) Image-based inertial impact test for composite interlaminar tensile properties. J Dyn Behav Mater 4:543–572CrossRefGoogle Scholar
  36. 36.
    Le Louëdec G, Pierron F, Sutton MA, Siviour C, Reynolds AP (2015) Identification of the dynamic properties of Al 5456 FSW welds using the virtual fields method. J Dyn Behav Mater 1(2):176–190CrossRefGoogle Scholar
  37. 37.
    Grédiac M, Blaysat B, Sur F (2017) A critical comparison of some metrological parameters characterizing local digital image correlation and grid method. Exp Mech 57(6):871–903CrossRefGoogle Scholar
  38. 38.
    Grédiac M, Sur F, Blaysat B (2016) The grid method for in-plane displacement and strain measurement: a review and analysis. Strain 52(3):205–243CrossRefGoogle Scholar
  39. 39.
    Abdul-Rahman H, Gdeisat M, Burton D, Lalor M (2005) Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. Proc SPIE 5856:32–40CrossRefGoogle Scholar
  40. 40.
    Holoborodko P (2019) Smooth noise-robust differentiators.
  41. 41.
    Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu J-J, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370CrossRefGoogle Scholar
  42. 42.
    Rossi M, Pierron F (2012) On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int J Solids Struct 49(3–4):420–435CrossRefGoogle Scholar
  43. 43.
    Rossi M, Lava P, Pierron F, Debruyne D, Sasso M (2015) Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM. Strain 51:206–222CrossRefGoogle Scholar
  44. 44.
    Lukić B, Saletti D, Forquin P (2016) Use of simulated experiments for material characterization of brittle materials subjected to high strain rate dynamic tension. Philos Trans R Soc Lond A Math Phys Eng Sci 375(2085):20160168Google Scholar
  45. 45.
    Orteu JJ, Garcia D, Robert L, Bugarin F (2006) A speckle texture image generator. Proc SPIE 6341:Google Scholar
  46. 46.
    Balcaen R, Wittevrongel L, Reu PL, Lava P, Debruyne D (2017) Stereo-DIC calibration and speckle image generator based on FE formulations. Exp Mech 57(5):703–718CrossRefGoogle Scholar
  47. 47.
    Cast3M®. (2019)
  48. 48.
    Europlexus Team (2017) Europlexus: a computer program for the finite element simulation of fluid-structure systems under transient dynamic loading—User’s manualGoogle Scholar
  49. 49.
    Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, BerlinzbMATHGoogle Scholar
  50. 50.
    de Souza Neto EA, Peric D, Owen DRJ (2008) Computational methods for plasticity: theory and applications. Wiley, HobokenCrossRefGoogle Scholar
  51. 51.
    Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual fields for the non-linear virtual fields method. Comput Mech 60(3):409–431MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.DMAS, ONERALilleFrance
  2. 2.LAMIH UMR CNRS 8201UPHF Le Mont HouyValenciennes Cedex 9France
  3. 3.Faculty of Engineering and the EnvironmentUniversity of SouthamptonHighfieldUK

Personalised recommendations