Advertisement

Computational Mechanics

, Volume 64, Issue 6, pp 1621–1637 | Cite as

Quantification of uncertain macroscopic material properties resulting from variations of microstructure morphology based on statistically similar volume elements: application to dual-phase steel microstructures

  • Niklas Miska
  • Daniel BalzaniEmail author
Original Paper
  • 129 Downloads

Abstract

A method to quantify uncertain macroscopic material properties resulting from variations of a material’s microstructure morphology is proposed. Basis is the computational homogenization of virtual experiments as part of a Monte-Carlo simulation to obtain the associated uncertain macroscopic material properties. A new general approach is presented to construct a set of artificial microstructures, which exhibits a statistically similar variation of the morphology as the real material’s microstructure. The individual artificial microstructures are directly constructed in a way that a lower discretization effort is required compared to real microstructures. The costs to perform the computational homogenization for all considered SSVEs are reduced by an adapted form of the Finite Cell concept and by applying the multilevel Monte-Carlo method. As an illustrative example, the proposed method is applied to a real Dual-Phase steel microstructure.

Keywords

Microstructure morphology variation Homogenization Finite cells Multilevel Monte Carlo DP-steel 

Notes

Acknowledgements

The authors greatly appreciate financial funding by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) as part of the priority program “Polymorphic uncertainty modeling for the numerical design of structures” (SPP 1886), project BA2823/12-1. Furthermore the authors thank the ZIH of TU Dresden for providing computing capabilities on its Taurus cluster. Additionally the authors thank Dr. Bojana Rosić for valuable discussions and hints regarding the multilevel Monte-Carlo method.

References

  1. 1.
    Balzani D, Brands D, Schröder J (2013) Plasticity and beyond: microstructures, crystal-plasticity and phase transitions. In: Chapter construction of statistically similar representative volume elements. CISM Lecture Notes No. 550Google Scholar
  2. 2.
    Balzani D, Scheunemann L, Brands D, Schröder J (2014) Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations. Comput. Mech. 54:1269–1284CrossRefGoogle Scholar
  3. 3.
    Brands D, Balzani D, Scheunemann L, Schröder J, Richter H, Raabe D (2016) Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data. Arch Appl Mech 86(3):575–598CrossRefGoogle Scholar
  4. 4.
    Deng H, Liu Y, Gai D, Dikin D, Putz KW, Chen W, Brinson LC, Burkhart C, Poldneff M, Jiang B, Papakonstantopoulos GJ (2012) Utilizing real and statistically reconstructed microstructures for the viscoelastic modeling of polymer nanocomposites. Compos Sci Technol 72:1725–1732CrossRefGoogle Scholar
  5. 5.
    Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197:3768–3782MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feyel F, Chaboche J (2000) Fe\({}^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330CrossRefGoogle Scholar
  7. 7.
    Fish J, Shek K (1999) Finite deformation plasticity for composite structures: computational models and adaptive strategies. Comput Methods Appl Mech Eng 172:145–174CrossRefGoogle Scholar
  8. 8.
    Geers M, Kouznetsova V, Brekelmans W (2003) Multi-scale first-order and second-order computational homogenization of microstructures towards continua. Int J Multiscale Comput Eng 1:371–386CrossRefGoogle Scholar
  9. 9.
    Geers M, Kouznetsova V, Brekelmans W (2010) Multi-scale computational homogenization: trends and challenges. J Comput Appl Math 234:2175–2182CrossRefGoogle Scholar
  10. 10.
    Giles M (2008) Multilevel Monte Carlo path simulation. Oper Res 56(3):607–617MathSciNetCrossRefGoogle Scholar
  11. 11.
    Golanski D, Terada K, Kikuchi N (1997) Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Comput Mech 19:188–201CrossRefGoogle Scholar
  12. 12.
    Heinrich S (2001) Multilevel Monte Carlo methods. Lect Notes Comput Sc 2179:58–67CrossRefGoogle Scholar
  13. 13.
    Hill R (1963) Elastic properties of reinforced solids: some theorethical principles. J Mech Phys Solids 11:357–372CrossRefGoogle Scholar
  14. 14.
    Hiriyur B, Waisman H, Deodatis G (2011) Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM. Int J Numer Meth Eng 88:257–278MathSciNetCrossRefGoogle Scholar
  15. 15.
    Klinkel S (2000) Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen. Dissertation thesis, Institut für Baustatik, Universität KarlsruheGoogle Scholar
  16. 16.
    Kouchmeshky B, Zabaras N (2010) Microstructure model reduction and uncertainty quantification in multiscale deformation processes. Comput Mater Sci 48:213–227CrossRefGoogle Scholar
  17. 17.
    Liu Y, Greene MS, Chen W, Dikin D, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput Aided Des 45:65–76CrossRefGoogle Scholar
  18. 18.
    Ma H, Wenxiang X, Li Y (2016) Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete. Comput Struct 177:103–113CrossRefGoogle Scholar
  19. 19.
    McKerns M, Hung P, Aivazis M (2009) mystic: a simple model-independent inversion framework. http://trac.mystic.cacr.caltech.edu/project/mystic
  20. 20.
    McKerns M, Strand L, Sullivan T, Fang A, and Aivazis M (2011) Building a framework for predictive science. In: Proceedings of the 10th python in science conferenceGoogle Scholar
  21. 21.
    Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. Comput Method Appl Mech Eng 171:387–418MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Method Appl Mech Eng 157:69–94MathSciNetCrossRefGoogle Scholar
  23. 23.
    Savvas D, Stefanou G, Papadrakakis M, Deodatis G (2014) Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM. Comput Mech 54:1221–1235MathSciNetCrossRefGoogle Scholar
  24. 24.
    Scheunemann L, Balzani D, Brands D, and Schröder J (2015) Construction of statistically similar RVEs. In: Conti S, Hackl K (eds) Analysis and computation of microstructure in finite plasticity (Lecture notes in applied and computational mechanics 78). Springer, BerlinzbMATHGoogle Scholar
  25. 25.
    Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478MathSciNetCrossRefGoogle Scholar
  26. 26.
    Schneider K, Klusemann B, Bargmann S (2016) Automatic three-dimensional geometry and mesh generation of periodic representative volume elements for matrix-inclusion composites. Adv Eng Softw 99:177–188CrossRefGoogle Scholar
  27. 27.
    Schröder J (2014) Plasticity and beyond–microstructures, crystal-plasticity and phase transitions. In: Chapter A numerical two-scale homogenization scheme: the FE2-method, CISM Lecture Notes No. 550, pp 1–64CrossRefGoogle Scholar
  28. 28.
    Simo J (1992) Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput Method Appl Mech Eng 99:61–112MathSciNetCrossRefGoogle Scholar
  29. 29.
    Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Method Appl Mech Eng 155:181–192CrossRefGoogle Scholar
  30. 30.
    Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tal D, Fish J (2018) Stochastic multiscale modeling and simulation framework for concrete. Cement Concr Compos 90:61–81CrossRefGoogle Scholar
  32. 32.
    Torquato S (2002) Random heterogeneous materials microstructure and macroscopic properties. Springer, BerlinCrossRefGoogle Scholar
  33. 33.
    Vel SS, Goupee AJ (2010) Multiscale thermoelastic analysis of random heterogeneous materials Part I: microstructure characterization and homogenization of material properties . Comput Mater Sci 48:22–38CrossRefGoogle Scholar
  34. 34.
    Wen P, Takano N, Kurita D (2016) Probabilistic multiscale analysis of three-phase composite material considering uncertainties in both physical and geometrical parameters at microscale. Acta Mech 227:2735–2747MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringChair of Mechanics - Continuummechanics, Ruhr-Universität BochumBochumGermany

Personalised recommendations