Advertisement

Computational Mechanics

, Volume 64, Issue 5, pp 1303–1319 | Cite as

The extended finite element method with novel crack-tip enrichment functions for dynamic fracture analysis of interfacial cracks in piezoelectric–piezomagnetic bi-layered structures

  • Z. Yan
  • W. J. FengEmail author
  • Ch. ZhangEmail author
  • J. X. Liu
Original Paper
  • 206 Downloads

Abstract

This paper investigates the dynamic fracture problems of interfacial cracks in piezoelectric–piezomagnetic (PE–PM) bi-layered composite structures under in-plane coupled electro-magneto-mechanical impact loadings by means of the extended finite element method (X-FEM). Considering the magnetoelectrically impermeable crack-face conditions and multi-filed coupled properties in the PE–PM composites, novel and more suitable crack-tip enrichment functions for interfacial cracks in PE–PM bi-layered composite structures are newly derived and implemented in the X-FEM, where the Newmark method is applied and proved to be effective. As the fracture parameter, the J-integral is evaluated using the domain-form of the path-independent contour integral. For dynamic analysis of interfacial cracks in infinite PE–PM bi-layered composite structures, absorbing layers based on the Sarma absorbing boundary conditions are adopted and applied to avoid the unphysical wave reflections at the artificially introduced boundaries in the X-FEM meshes. In the numerical examples, the validity of the proposed scheme is verified by comparing the numerical solutions provided by the X-FEM with either analytical results obtained by solving the corresponding singular integral equations or possible stationary values obtained by introducing the corresponding absorbing layers. Finally, by the numerical examples, the effects of the applied dynamic loadings, time variable and structural geometries on the dynamic J-integral are analyzed and discussed in detail. Some important conclusions are drawn, which should be helpful for the design and applications of the PE–PM layered composite structures.

Keywords

Extended finite element method Piezoelectric–piezomagnetic layered structures Interfacial crack Dynamic fracture J-integral 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11072160, 11572358 and 11272222), the General Research Fund of Hong Kong (HKU 17223916) and the German Research Foundation (DFG, Project No. ZH 15/14-1). Zhen Yan is also grateful to the financial support by the China Scholarship Council (CSC) for the Joint PhD Scholarship at the Chair of Structural Mechanics, University of Siegen, Germany.

References

  1. 1.
    Li YD, Zhao H, Zhang N (2013) Mixed mode fracture of a piezoelectric–piezomagnetic bi-layer structure with two un-coaxial cracks parallel to the interface and each in a layer. Int J Solids Struct 50(22–23):3610–3617CrossRefGoogle Scholar
  2. 2.
    Nan CW, Bichurin MI, Dong SX et al (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103(3):031101CrossRefGoogle Scholar
  3. 3.
    Li YD, Lee KY, Feng FX (2011) Magnetostrictive/electrostrictive fracture of the piezomagnetic and piezoelectric layers in a multiferroic composite: anti-plane case. Int J Solids Struct 48(9):1311–1317zbMATHCrossRefGoogle Scholar
  4. 4.
    Jin J, Ma P, Feng WJ (2013) Further analysis for fracture behaviors of an interfacial crack between piezoelectric and piezomagnetic layers. Eng Mech 30(6):327–333Google Scholar
  5. 5.
    Wan YP, Yue YP, Zhong Z (2012) Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field. Eng Fract Mech 84:132–145CrossRefGoogle Scholar
  6. 6.
    Tian W, Zhong Z, Li Y (2016) Multilayered piezomagnetic/piezoelectric composites with periodic interfacial cracks subject to in-plane loading. Smart Mater Struct 25(1):015029CrossRefGoogle Scholar
  7. 7.
    Yu T, Bui TQ, Liu P et al (2015) Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. Int J Solids Struct 67–68:205–218CrossRefGoogle Scholar
  8. 8.
    Feng WJ, Li YS, Xu ZH (2009) Transient response of an interfacial crack between dissimilar magnetoelectroelastic layers under magnetoelectromechanical impact loadings: mode-I problem. Int J Solids Struct 46(18):3346–3356zbMATHCrossRefGoogle Scholar
  9. 9.
    Wang BL, Han JC, Du SY (2010) Transient fracture of a layered magnetoelectroelastic medium. Mech Mater 42(3):354–364CrossRefGoogle Scholar
  10. 10.
    Ma P, Su RKL, Feng WJ (2018) Singularity of subsonic and transonic crack propagations along interfaces of magnetoelectroelastic bimaterials. Int J Eng Sci 129:21–33MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang BL, Mai YW (2007) Self-consistent analysis of coupled magnetoelectroelastic fracture theoretical investigation and finite element verification. Comput Methods Appl Mech Eng 196(13–16):2044–2054MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lei J, Zhang Ch, Bui TQ (2015) Transient dynamic interface crack analysis in magnetoelectroelastic bi-materials by a time-domain BEM. Eur J Mech A Solids 49:146–157MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Sladek J, Sladek V, Solek P et al (2008) Fracture analysis of cracks in magneto-electro-elastic solids by the MLPG. Comput Mech 42(5):697–714zbMATHCrossRefGoogle Scholar
  14. 14.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620zbMATHCrossRefGoogle Scholar
  15. 15.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Liu P, Yu T, Bui TQ et al (2013) Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput Mater Sci 69(1):542–558CrossRefGoogle Scholar
  17. 17.
    Béchet E, Scherzer M, Kuna M (2009) Application of the X-FEM to the fracture of piezoelectric materials. Int J Numer Methods Eng 77(11):1535–1565MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ma P, Su RKL, Feng WJ et al (2015) The extended finite element method with new crack-tip enrichment functions for an interface crack between two dissimilar piezoelectric materials. Int J Numer Methods Eng 103(2):94–113MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rojas-Díaz R, Sukumar N, Sáez A et al (2011) Fracture in magnetoelectroelastic materials using the extended finite element method. Int J Numer Methods Eng 88(12):1238–1259MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ma P, Su RKL, Feng WJ (2016) Crack tip enrichment functions for extended finite element analysis of two-dimensional interface cracks in anisotropic magnetoelectroelastic bimaterials. Eng Fract Mech 161:21–39CrossRefGoogle Scholar
  21. 21.
    Bui TQ, Zhang Ch (2012) Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Comput Mater Sci 62:243–257CrossRefGoogle Scholar
  22. 22.
    Bui TQ, Zhang Ch (2013) Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM. Finite Elem Anal Des 69(1):19–36CrossRefGoogle Scholar
  23. 23.
    Liu P, Yu T, Bui TQ et al (2014) Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int J Solids Struct 51(11–12):2167–2182CrossRefGoogle Scholar
  24. 24.
    Bhargava RR, Sharma K (2011) A study of finite size effects on cracked 2-D piezoelectric media using extended finite element method. Comput Mater Sci 50(6):1834–1845CrossRefGoogle Scholar
  25. 25.
    Bhargava RR, Sharma K (2012) Application of X-FEM to study two-unequal-collinear cracks in 2-D finite magnetoelectoelastic specimen. Comput Mater Sci 60:75–98CrossRefGoogle Scholar
  26. 26.
    Sukumar N, Huang ZY, Prévost JH et al (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59(8):1075–1102zbMATHCrossRefGoogle Scholar
  27. 27.
    Suo Z, Kuo C, Barnett D et al (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4):739–765MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ou ZC, Wu X (2003) On the crack-tip stress singularity of interfacial cracks in transversely isotropic piezoelectric bimaterials. Int J Solids Struct 40(26):7499–7511zbMATHCrossRefGoogle Scholar
  29. 29.
    Li R, Kardomateas GA (2007) The mixed mode I and II interface crack in piezoelectromagneto-elastic anisotropic bimaterials. J Appl Mech Trans ASME 74(4):614–627CrossRefGoogle Scholar
  30. 30.
    Sarma GS, Mallick K, Gadhinglajkar VR (1998) Nonreflecting boundary condition in finite-element formulation for an elastic wave equation. Geophysics 63(3):1006–1016CrossRefGoogle Scholar
  31. 31.
    Semblat JF, Gandomzadeh A, Lenti L (2010) A simple numerical absorbing layer method in elastodynamics. C R Mec 338(1):24–32zbMATHCrossRefGoogle Scholar
  32. 32.
    Smelser RE, Gurtin ME (1977) On the J-integral for bi-material bodies. Int J Fract 13(3):382–384Google Scholar
  33. 33.
    Chessa J, Wang H, Belytschko T et al (2003) On the construction of blending elements for local partition of unity enriched finite elements. Int J Numer Methods Eng 57(7):1015–1038zbMATHCrossRefGoogle Scholar
  34. 34.
    Belytschko T, Chen H, Xu J et al (2003) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905zbMATHCrossRefGoogle Scholar
  35. 35.
    Menk A, Stéphane PA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85(13):1609–1632MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Moës N, Cloirec M, Cartraud P et al (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192(28):3163–3177zbMATHCrossRefGoogle Scholar
  37. 37.
    Herrmann KP, Loboda VV, Khodanen TV (2010) An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial. Arch Appl Mech 80(6):651–670zbMATHCrossRefGoogle Scholar
  38. 38.
    Rao SG, Xia YM (1995) Dynamic elastic-plastic fem analysis of a fracture specimen under plane stress state. Eng Fract Mech 52(4):755–763CrossRefGoogle Scholar
  39. 39.
    Laborde P, Pommier J, Renard Y et al (2010) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64(3):354–381zbMATHCrossRefGoogle Scholar
  40. 40.
    Hattori G, Rojas-Díaz R, Sáez A et al (2012) New anisotropic crack-tip enrichment functions for the extended finite element method. Comput Mech 50(5):591–601MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Idesman AV (2007) Solution of linear elastodynamics problems with space-time finite elements on structured and unstructured meshes. Comput Methods Appl Mech Eng 196(9):1787–1815zbMATHCrossRefGoogle Scholar
  42. 42.
    Huang CY (1997) Recent progress in multiblock hybrid structured and unstructured mesh generation. Comput Methods Appl Mech Eng 150(1–4):1–24zbMATHCrossRefGoogle Scholar
  43. 43.
    Asadpoure A, Mohammadi S (2010) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69(10):2150–2172zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering MechanicsShijiazhuang Tiedao UniversityShijiazhuangPeople’s Republic of China
  2. 2.Department of Civil EngineeringUniversity of SiegenSiegenGermany

Personalised recommendations