Advertisement

Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction

  • R. Ibañez
  • E. Abisset-Chavanne
  • E. CuetoEmail author
  • A. Ammar
  • J. -L. Duval
  • F. Chinesta
Original Paper
  • 22 Downloads

Abstract

Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to reconstruct a signal at less than 2Q samplings per second, where Q stands for the highest frequency content of the signal. This property has, however, important applications in the field of computational mechanics, as we analyze in this paper. We consider a wide variety of applications, such as model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction. Examples are provided for all of them that show the potentialities of compressed sensing in terms of CPU savings in the field of computational mechanics.

Keywords

Compressed sensing Model order reduction Manifold learning Nonlinear dimensionality reduction 

Notes

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through Grants Numbers DPI2017-85139-C2-1-R and DPI2015-72365-EXP and by the Regional Government of Aragon and the European Social Fund, research group T24 17R. This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 675919.

References

  1. 1.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newtonian Fluid Mech 139:153–176CrossRefzbMATHGoogle Scholar
  2. 2.
    Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144:98–121CrossRefzbMATHGoogle Scholar
  3. 3.
    Amsallem D, Farhat C (2008) An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46:1803–1813CrossRefGoogle Scholar
  4. 4.
    Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201–204:1–12.  https://doi.org/10.1016/j.cma.2011.08.025 CrossRefzbMATHGoogle Scholar
  6. 6.
    Borzacchiello D, Aguado JV, Chinesta F (2017) Non-intrusive sparse subspace learning for parametrized problems. Arch Comput Methods Eng.  https://doi.org/10.1007/s11831-017-9241-4 Google Scholar
  7. 7.
    Borzacchiello D, Aguado JV, Chinesta F (2017) Reduced order modelling for efficient numerical optimisation of a hot-wall chemical vapour deposition reactor. Int J Numer Methods Heat Fluid Flow 27(7):1602–1622.  https://doi.org/10.1108/HFF-04-2016-0153 CrossRefGoogle Scholar
  8. 8.
    Breitkopf P, Naceur H, Rassineux A, Villon P (2005) Moving least squares response surface approximation: formulation and metal forming applications. Comput Struct 83(17–18):1411–1428CrossRefGoogle Scholar
  9. 9.
    Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1517384113 zbMATHGoogle Scholar
  10. 10.
    Bungartz HJ, Griebel M (2004) Sparse grids. Acta Numer 13:147–269MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chinesta F, Ammar A, Cueto E (2010) Recent advances in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chinesta F, Cueto E (2014) PGD-based modeling of materials, structures and processes. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Chinesta F, Huerta A, Rozza G, Willcox K (2017) Model reduction methods. Encyclopedia of computational mechanics, 2nd edn. Wiley, HobokenGoogle Scholar
  14. 14.
    Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404CrossRefGoogle Scholar
  15. 15.
    Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59.  https://doi.org/10.1007/s11831-013-9080-x MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cueto E, González D, Alfaro I (2016) Proper generalized decompositions: an introduction to computer implementation with Matlab. SpringerBriefs in applied sciences and technology. Springer, BerlinCrossRefzbMATHGoogle Scholar
  17. 17.
    Everson R, Sirovich L (1995) Karhunen-loève procedure for gappy data. J Opt Soc Am A 12(8):1657–1664.  https://doi.org/10.1364/JOSAA.12.001657 CrossRefGoogle Scholar
  18. 18.
    Farhat C, Chapman T, Avery P (2015) Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int J Numer Methods Eng 102(5):1077–1110.  https://doi.org/10.1002/nme.4820 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    González D, Aguado JV, Cueto E, Abisset-Chavanne E, Chinesta F (2016) kPCA-based parametric solutions within the PGD framework. Arch Comput Methods Eng.  https://doi.org/10.1007/s11831-016-9173-4 zbMATHGoogle Scholar
  20. 20.
    González D, Chinesta F, Cueto E (2019) Learning corrections for hyperelastic models from data. Front Mater.  https://doi.org/10.3389/fmats.2019.00014 Google Scholar
  21. 21.
    Ibanez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2018) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Comput Methods Eng 25(1):47–57MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ibañez R, Abisset-Chavanne E, Ammar A, González D, Cueto E, Huerta A, Duval JL, Chinesta F (2018) A multi-dimensional data-driven sparse identification technique: the sparse proper generalized decomposition. Complexity.  https://doi.org/10.1155/2018/5608286 zbMATHGoogle Scholar
  23. 23.
    Ibañez R, Abisset-Chavanne E, Gonzalez D, Duval J, Cueto E, Chinesta F (2018) Hybrid constitutive modeling: Data-driven learning of corrections to plasticity models. Int J Mater Form.  https://doi.org/10.1007/s12289-018-1448-x zbMATHGoogle Scholar
  24. 24.
    Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladeveze P, Chinesta F (2017) Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput Mech 60(5):813–826.  https://doi.org/10.1007/s00466-017-1440-1 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kaiser E, Kutz JN, Brunton SL (2018) Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc R Soc Lond A Math Phys Eng Sci 474(2219):20180335.  https://doi.org/10.1098/rspa.2018.0335 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kutz JN (2013) Data-driven modeling and scientific computation. Methods for complex systems and big-data. Oxford University Press, OxfordzbMATHGoogle Scholar
  27. 27.
    Ladeveze P (1989) The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables. Comptes Rendus Académie des Sciences Paris 309:1095–1099zbMATHGoogle Scholar
  28. 28.
    Ladeveze P (1999) Nonlinear computational structural mechanics. Springer, New YorkCrossRefzbMATHGoogle Scholar
  29. 29.
    Lee J, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New YorkCrossRefzbMATHGoogle Scholar
  30. 30.
    Leon A, Barasinski A, Abisset-Chavanne E, Cueto E, Chinesta F (2018) Wavelet-based multiscale proper generalized decomposition. Comptes Rendus Academie de Sciences - Mécanique 346(7):485–500CrossRefGoogle Scholar
  31. 31.
    Lopez E, Gonzalez D, Aguado JV, Abisset-Chavanne E, Cueto E, Binetruy C, Chinesta F (2016) A manifold learning approach for integrated computational materials engineering. Arch Comput Methods Eng.  https://doi.org/10.1007/s11831-016-9172-5 zbMATHGoogle Scholar
  32. 32.
    Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(1):2579–2605zbMATHGoogle Scholar
  33. 33.
    Mangan NM, Brunton SL, Proctor JL, Kutz JN (2016) Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans Mol Biol Multi-Scale Commun 2(1):52–63.  https://doi.org/10.1109/TMBMC.2016.2633265 CrossRefGoogle Scholar
  34. 34.
    Meng L, Breitkopf P, Le Quilliec G, Raghavan B, Villon P (2018) Nonlinear shape-manifold learning approach: concepts, tools and applications. Arch Comput Methods Eng 25(1):1–21MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Millán D, Arroyo M (2013) Nonlinear manifold learning for model reduction in finite elastodynamics. Comput Methods Appl Mech Eng 261–262:118–131.  https://doi.org/10.1016/j.cma.2013.04.007 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23–24):1603–1626.  https://doi.org/10.1016/j.cma.2010.01.009 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Patera A, Rozza G (2007) Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Tech. rep., MIT Pappalardo Monographs in Mechanical EngineeringGoogle Scholar
  38. 38.
    Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced basis approximation for parametrized PDE and applications. J Math Ind 1:3CrossRefzbMATHGoogle Scholar
  39. 39.
    Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326.  https://doi.org/10.1126/science.290.5500.2323 CrossRefGoogle Scholar
  40. 40.
    Rozza G, Huynh D, Patera A (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229–275MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202(1):346–366MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288MathSciNetzbMATHGoogle Scholar
  43. 43.
    Volkwein S (2001) Model reduction using proper orthogonal decomposition. Tech. rep., Lecture Notes, Institute of Mathematics and Scientific Computing, University of GrazGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Ibañez
    • 1
  • E. Abisset-Chavanne
    • 2
  • E. Cueto
    • 3
    Email author
  • A. Ammar
    • 4
  • J. -L. Duval
    • 5
  • F. Chinesta
    • 6
  1. 1.ESI Group Chair, Ecole Centrale de NantesNantesFrance
  2. 2.ESI Chair and I2M Lab, Arts et Métiers ParisTech Centre de Bordeaux-TalenceTalenceFrance
  3. 3.Aragon Institute of Engineering ResearchUniversidad de ZaragozaZaragozaSpain
  4. 4.LAMPA, ENSAM AngersAngers Cedex 01France
  5. 5.ESI GroupRungis CEDEXFrance
  6. 6.ESI Chair at PIMM Lab, ENSAM ParisTechParisFrance

Personalised recommendations