Non-intrusive data learning based computational homogenization of materials with uncertainties

  • Nawfal BlalEmail author
  • Anthony Gravouil
Original Paper


This paper is devoted to the study of the influence of variabilities and uncertainties when homogenizing the effective behavior of elastic heterogeneous media. A new non-intrusive approach is proposed connecting computational homogenization schemes and reduced order models. The effect of the local material variabilities and uncertainties on the overall behavior is studied using a high dimensional parametric approach.


Computational homogenization VAMUCH Reduced order model Material uncertainties 



  1. 1.
    Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, AmsterdamzbMATHGoogle Scholar
  2. 2.
    Sanchez-Palencia E (1980) Nonhomogeneous media and vibration theory, vol 127. Springer, BerlinzbMATHGoogle Scholar
  3. 3.
    Voigt W (1889) Ueber die bezienhung zwischen den beiden elasticitätsconstanten isotroper körper. Ann Phys 38:573–587CrossRefzbMATHGoogle Scholar
  4. 4.
    Reuss A (1929) Berechnung der fliessgrenze von mischkristallen auf grund der plastizittsbedingung fr einkristalle. Z Angew Math Mech 9:49–58CrossRefzbMATHGoogle Scholar
  5. 5.
    Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324Google Scholar
  6. 6.
    Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Walpole LJ (1981) Elastic behavior of composite materials: theoretical foundations. Adv Appl Mech 21:169–242CrossRefzbMATHGoogle Scholar
  8. 8.
    Willis JR (1977) Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys Solids 25:185–202CrossRefzbMATHGoogle Scholar
  9. 9.
    Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRefGoogle Scholar
  11. 11.
    Castañeda P Ponte, Willis JR (1995) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43:1919–1951MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Adams DF, Doner DAR (1967) Transverse normal loading of a unidirectional composite. J Compos Mater 1:152CrossRefGoogle Scholar
  13. 13.
    Suquet P (1995) Overall properties of nonlinear composites : secant moduli theory and its link with Ponte Castaneda’s variational procedure. C R Acad Sci 320:563–571zbMATHGoogle Scholar
  14. 14.
    Wenbin Yu, Tang Tian (2007) Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials. Int J Solids Struct 44:3738–3755MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wenbin Yu, Tang Tian (2007) A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials. Int J Solids Struct 44:7510–7525CrossRefzbMATHGoogle Scholar
  16. 16.
    Teng Chong, Wenbin Yu, Chen Ming Y (2012) Variational asymptotic homogenization of temperature-dependent heterogeneous materials under finite temperature changes. Int J Solids Struct 49(18):2439–2449CrossRefGoogle Scholar
  17. 17.
    Wenbin Yu, Zhang Lian (2015) Variational asymptotic homogenization of elastoplastic composites. Compos Struct 133:947–958CrossRefGoogle Scholar
  18. 18.
    Zhu TWenqi, Blal Nawfal, Cunsolo Salvatore, Baillis Dominique (2017) Micromechanical modeling of effective elastic properties of open-cell foam. Int J Solids Struct 115(Suppl. C):61–72CrossRefGoogle Scholar
  19. 19.
    Liu Zeliang, Bessa MA, Liu Wing Kam (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu Z, Kafka OL, Yu C, Liu WK (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. Springer, Cham, pp 221–242Google Scholar
  21. 21.
    Liu Z, Fleming M, Liu WK (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tang Shaoqiang, Zhang Lei, Liu Wing Kam (2018) From virtual clustering analysis to self-consistent clustering analysis: a mathematical study. Comput Mech 62(6):1443–1460MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sakata S, Ashida F, Kojima T, Zako M (2008) Three-dimensional stochastic analysis using a perturbation- based homogenization method for elastic properties of composite material considering microscopic uncertainty. Int J Solids Struct 45:884–907zbMATHGoogle Scholar
  24. 24.
    Zhou X-Y, Gosling PD, Pearce CJ, Ullah Z, Kaczmarczyk L (2016) Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites. Int J Solids Struct 80:368–380CrossRefGoogle Scholar
  25. 25.
    Wen Bin, Li Zheng, Zabaras Nicholas (2011) Thermal response variability of random polycrystalline microstructures. Commun Comput Phys 10(3):607–634CrossRefGoogle Scholar
  26. 26.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679CrossRefzbMATHGoogle Scholar
  27. 27.
    Leclerc W, Karamian-Surville P (2013) Domain decomposition methods to evaluate effective elastic properties of random fibre composites in the framework of the double-scale homogenization. Int J Solids Struct 50:2808–2816CrossRefGoogle Scholar
  28. 28.
    Lopez E, Abisset-Chavanne E, Lebel F, Upadhyay R, Comas S, Binetruy C, Chinesta F (2015) Advanced thermal simulation of processes involving materials exhibiting fine-scale microstructures. Int J Mater Form 40:1222–2Google Scholar
  29. 29.
    Clement A, Soize C, Yvonnet J (2012) Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. Int J Numer Methods Eng 91(8):799–824CrossRefGoogle Scholar
  30. 30.
    Bessa MA, Bostanabad R, Liu Z, Hu A, Apley Daniel W, Brinson C, Chen W, Liu WingKam (2017) A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput Methods Appl Mech Eng 320:633–667MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bostanabad Ramin, Liang Biao, Gao Jiaying, Liu Wing Kam, Cao Jian, Zeng Danielle, Su Xuming, Xu Hongyi, Li Yang, Chen Wei (2018) Uncertainty quantification in multiscale simulation of woven fiber composites. Comput Methods Appl Mech Eng 338:506–532MathSciNetCrossRefGoogle Scholar
  32. 32.
    Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1):69–94MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Suquet P (1987) Elements of homogenization for inelastic solid mechanics. Springer, Berlin, pp 193–278zbMATHGoogle Scholar
  34. 34.
    Nguyen V-D, Béchet E, Geuzaine C, Noels L (2012) Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci 55:390–406CrossRefGoogle Scholar
  35. 35.
    Benzi M, Golub G-H, Liesen J (2005) Numerical solution of saddle point problems. Acta Numerica 4:1–137MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Amsallem D, Farhat C (2008) Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46:1803–1813CrossRefGoogle Scholar
  37. 37.
    Lu Y, Blal N, Gravouil A (2018) Space-time pod based computational vademecums for parametric studies: application to thermo-mechanical problems. Adv Model Simul Eng Sci 5(1):3CrossRefGoogle Scholar
  38. 38.
    Mosquera R, Falaize A, El-Hamidi A, Hamdouni A (2018) Interpolation of reduced bases by inverse Grassmann distance weighting and grassmannian kriging with application to incompressible flows. In: 6th European conference on computational mechanics (ECCM 6), GlasgowGoogle Scholar
  39. 39.
    Modesto David, Zlotnik Sergio, Huerta Antonio (2015) Proper generalized decomposition for parameterized helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. Comput Methods Appl Mech Eng 295:127–149MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lu Y, Blal N, Gravouil A (2018) Adaptive sparse grid based HOPGD: toward a nonintrusive strategy for constructing space-time welding computational vademecum. Int J Numer Methods Eng 114(13):1438–1461MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ye Lu, Blal Nawfal, Gravouil Anthony (2018) Multi-parametric space-time computational vademecum for parametric studies: application to real time welding simulations. Finite Elem Anal Des 139:62–72MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ Lyon, INSA-Lyon, CNRS UMR5259, LaMCoSVilleurbanneFrance

Personalised recommendations