Computational Mechanics

, Volume 64, Issue 3, pp 789–805 | Cite as

Rotation vector and its complement parameterization for singularity-free corotational shell element formulations

  • Jinsong Yang
  • Pinqi XiaEmail author
Original Paper


Theoretical and computational aspects of rotation vector and its complement parameterization are examined in detail in this paper. The mutual relationships between the variations of rotation vector and its complement and the spin variable are presented. It shows that the switch of rotation parameter between rotation vector and its complement preserves not only the strains but also the angular velocity and acceleration, and the force vectors and tangent matrices of an element. Two singularity-free corotational shell element formulations are presented. The first formulation is a non-consistent one, in which a simple way only using rotation vector is proposed to modify the exact rotation update approach via the Baker–Campbell–Hausdorff formula, while the second formulation is a consistent one. The novelty is that, following the presented method, the existing singular spatial beam and shell element formulations based on rotation vector parameterization could be modified to be the singularity-free ones with only a few changes. Finally, three numerical examples involving large rotations are analyzed to demonstrate the capability of the presented formulations.


Finite rotations Rotation vector Nonlinear shell elements Corotational formulation 



  1. 1.
    Bathe KJ (1996) Finite element procedures, chap 6. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  2. 2.
    Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Advanced topics, chaps 17–18, vol 2. Wiley, ChischesterGoogle Scholar
  3. 3.
    Stuelpnagel J (1964) On the parametrization of the three-dimensional rotation group. SIAM Rev 6(4):422–430MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Argyris J (1982) An excursion into large rotations. Comput Methods Appl Mech Eng 32(1–3):85–155MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Geradin M, Rixen D (1995) Parametrization of finite rotations in computational dynamics: a review. Revue europenne des lments finis 4(5–6):497–553MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bauchau OA, Trainelli L (2003) The vectorial parameterization of rotation. Nonlinear Dyn 32(1):71–92MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Makinen J (2008) Rotation manifold SO(3) and its tangential vectors. Comput Mech 42:907–919MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cardona A, Geradin M (1988) A beam finite element non-linear theory with finite rotations. Int J Numer Methods Eng 26(11):2403–2438zbMATHCrossRefGoogle Scholar
  9. 9.
    Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66(2):125–161MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ibrahimbegovic A (1997) On the choice of finite rotation parameters. Comput Methods Appl Mech Eng 149(1–4):49–71MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18(2):950–973zbMATHCrossRefGoogle Scholar
  12. 12.
    Ritto-Correa M, Camotim D (2002) On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of Reissner–Simo beam theory. Int J Numer Methods Eng 55(9):1005–1032MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Smolenski WM (1999) Statically and kinematically exact nonlinear theory of rods and its numerical verification. Comput Methods Appl Mech Eng 178(1–2):89–113MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng 191(17–18):1755–1789zbMATHCrossRefGoogle Scholar
  15. 15.
    Ibrahimbegovic A, Frey F, Kozar I (1995) Computational aspects of vector-like parameterization of three-dimensional finite rotations. Int J Numer Methods Eng 38(21):3653–3673zbMATHCrossRefGoogle Scholar
  16. 16.
    Makinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048 2007MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ghosh S, Roy D (2009) A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Comput Mech 44:103–118zbMATHCrossRefGoogle Scholar
  18. 18.
    Engø K (2001) On the BCH-formula in so(3). BIT Numer Math 41:629–632MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Nour-Omid B, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Methods Appl Mech Eng 93(3):353–384zbMATHCrossRefGoogle Scholar
  20. 20.
    Hsiao KM, Hung HC (1989) Large-deflection analysis of shell structure by using corotational total lagrangian formulation. Comput Methods Appl Mech Eng 73(2):209–225zbMATHCrossRefGoogle Scholar
  21. 21.
    Felippa CA, Haugen B (2004) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21–24):2285–2335zbMATHGoogle Scholar
  22. 22.
    Pacoste C (1998) Co-rotational flat facet triangular elements for shell instability analysis. Comput Methods Appl Mech Eng 156(1–4):75–110zbMATHCrossRefGoogle Scholar
  23. 23.
    Caselli F, Bisegna P (2013) Polar decomposition based corotational framework for triangular shell elements with distributed loads. Int J Numer Methods Eng 95(6):499–528MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Peng X, Crisfield MA (1992) A consistent co-rotational formulation for shells using the constant stress-constant moment triangle. Int J Numer Methods Eng 35(9):1829–1847zbMATHCrossRefGoogle Scholar
  25. 25.
    Li ZX, Vu-Quoc L (2007) An efficient co-rotational formulation for curved triangular shell element. Int J Numer Methods Eng 72(9):1029–1062MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zhong HG, Crisfield MA (1998) An energy-conserving co-rotational procedure for the dynamics of shell structures. Eng Comput 15(5):552–576zbMATHCrossRefGoogle Scholar
  27. 27.
    Yang JS, Xia PQ (2015) Corotational nonlinear dynamic analysis of thin-shell structures with finite rotations. AIAA J 53(3):663–677CrossRefGoogle Scholar
  28. 28.
    Espath LFR, Braun AL, Awruch AM, Dalcin LD (2015) A NURBS based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach. Int J Numer Methods Eng 102(13):1839–1868MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Chimakurthi SK, Cesnik SKC, Stanford BK (2011) Flapping-wing structural dynamics formulation based on a corotational shell finite element. AIAA J 49(1):128–142CrossRefGoogle Scholar
  30. 30.
    Cho H, Shin S, Yoh JJ (2017) Geometrically nonlinear quadratic solid/solid-shell element based on consistent corotational approach. Int J Numer Methods Eng 112(5):434–458CrossRefGoogle Scholar
  31. 31.
    Shi J, Liu Z, Hong J (2018) Multibody dynamic analysis using a rotation-free shell element with corotational frame. Acta Mech SinGoogle Scholar
  32. 32.
    Battini JM, Pacoste C (2006) On the choice of the linear element for corotational triangular shells. Comput Methods Appl Mech Eng 195(44–47):6362–6377 Kindly provide volume and page range for the Reference [31]zbMATHCrossRefGoogle Scholar
  33. 33.
    Mostafa M, Sivaselvan MV (2014) On best-fit corotated frames for 3D continuum finite elements. Int J Numer Methods Eng 98(2):105–130MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Izzuddin BA, Liang Y (2016) Bisector and zero-macrospin co-rotational systems for shell elements. Int J Numer Methods Eng 105(4):286–320MathSciNetCrossRefGoogle Scholar
  35. 35.
    Crisfield MA, Moita GF (1996) A unified co-rotational framework for solids shells and beams. Int J Solids Struct 33(20–22):2969–2992zbMATHCrossRefGoogle Scholar
  36. 36.
    Battini JM (2015) The corotational method: an alternative to derive nonlinear finite elements. In: Fifteenth international conference on civil, structural and environmental engineering computing, Prague, Czech Republic, 1–4 SeptGoogle Scholar
  37. 37.
    Ghosh S, Roy D (2010) On the relation between rotation increments in different tangent spaces. Mech Res Commun 37(6):525–530zbMATHCrossRefGoogle Scholar
  38. 38.
    Rankin CC, Nour-Omid B (1988) The use of projectors to improve finite element performance. Comput Struct 30(1–2):257–267zbMATHCrossRefGoogle Scholar
  39. 39.
    Spurrier RA (1978) Comment on singularity-free extraction of a quaternion from a direction-cosine matrix. J Spacecr Rockets 15(4):255CrossRefGoogle Scholar
  40. 40.
    Pujol J (2014) On Hamiltons nearly-forgotten early work on the relation between rotations and quaternions and on the composition of rotations. Am Math Mon 121(6):515–522MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Pacoste C, Eriksson A (1997) Beam elements in instability problems. Comput Methods Appl Mech Eng 144(1–2):163–197zbMATHCrossRefGoogle Scholar
  42. 42.
    Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16–18):2125–2168zbMATHCrossRefGoogle Scholar
  43. 43.
    Batoz JL, Bathe KJ, Ho LW (1980) A study of three-node triangular plate bending elements. Int J Numer Methods Eng 15(2):1771–1812zbMATHCrossRefGoogle Scholar
  44. 44.
    Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551–1569CrossRefGoogle Scholar
  45. 45.
    Yang YB, Shieh MS (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116CrossRefGoogle Scholar
  46. 46.
    Basar Y, Ding Y (1990) Finite-rotation shell elements for the nonlinear analysis of thin shell structures. Int J Solids Struct 26(1):83–97zbMATHCrossRefGoogle Scholar
  47. 47.
    Stander N, Matzenmiller A, Ramm E (1984) An assessment of assumed strain methods in finite rotation shell analysis. Eng Comput 6(1):58–66CrossRefGoogle Scholar
  48. 48.
    Wriggers P, Gruttmann F (1993) Thin shells with finite rotations formulated in biot stresses: theory and finite element formulation. Int J Numer Methods Eng 36(12):2049–2071zbMATHCrossRefGoogle Scholar
  49. 49.
    Goto Y, Watanable Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909CrossRefGoogle Scholar
  50. 50.
    Rebel G (1998) Finite rotation shell theory including drill rotations and its finite element implementation. Ph.D. Dissertation, Aerospace Engineering, Delft University of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Aerospace EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations