Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale

  • S. Nishi
  • K. TeradaEmail author
  • I. Temizer
Original Paper


With a view to application to meso–macro decoupled two-scale draping simulations of dry woven fabrics, the method of isogeometric analysis (IGA) is applied to the numerical plate testing (NPT) for their periodic unit structures involving frictional contact at meso-scale. The meso-structure having periodicity only in in-plane directions is identified with a representative volume element to characterize the macroscopic mechanical behavior that reflects the interfacial frictional contact phenomenon between fiber bundles. NURBS basis functions are utilized to accurately solve macro-scale frictional contact problems and the mortar-based knot-to-surface algorithms are employed to evaluate the contact- and friction-related variables. A weaving process is simulated as a preliminary analysis to obtain the initial state of an in-plane unit cell that is subjected to bending of fiber bundles contacting with each other. Several numerical examples are presented to demonstrate the performance and capability of the proposed method of IGA-based NPT for characterizing the macroscopic structural responses of dry woven fabrics that can be substituted by macroscopic ‘inelastic material’ behaviors.


Isogeometric analysis Frictional contact Numerical plate testing Dry woven fabric Homogenization 



This work was supported by CSTI (Cross-ministerial Strategic Innovation Promotion Program) and NEDO (New Energy and Industrial Technology Development Organization) for SIP (Innovative design/manufacturing technologies).


  1. 1.
    Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Springer, BerlinzbMATHGoogle Scholar
  2. 2.
    Zohdi TI, Wriggers P (2005) An introduction to computational micromechanics, lecture notes in applied and computational mechanics. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Devries F, Dumontet H, Duvaut G, Léné F (1989) Homogenization and damage for composite structures. Int J Numer Methods Eng 27:285–298MathSciNetCrossRefGoogle Scholar
  4. 4.
    Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198MathSciNetCrossRefGoogle Scholar
  5. 5.
    Matouš K, Geers MGD, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. Comput Phys 330:192–220MathSciNetCrossRefGoogle Scholar
  6. 6.
    Geers MGD, Kouznetsova VG, Matous K, Yvonnet J (2017) Homogenization methods and multiscale modeling: nonlinear problems. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, 6 volume set, 2nd ed. 2018Google Scholar
  7. 7.
    Terada K, Kikuchi N (1995) Nonlinear homogenization method for practical applications. In: Ghosh S, Ostoja-Starzewski M (eds) Computational methods in micromechanics, AMSE AMD, vol 212, pp 1–16Google Scholar
  8. 8.
    Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190:5427–5464MathSciNetCrossRefGoogle Scholar
  9. 9.
    Feyel F, Chaboche J-L (2000) \(\text{ FE }^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183:309–330CrossRefGoogle Scholar
  10. 10.
    Fish J, Yuan Z (2005) Multiscale enrichment based on partition of unity. Int J Numer Methods Eng 62:1341–1359CrossRefGoogle Scholar
  11. 11.
    Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52:1199–1219MathSciNetCrossRefGoogle Scholar
  12. 12.
    Suquet PM (1987) Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homogenization techniques for composite media. Springer, Berlin, pp 193–278CrossRefGoogle Scholar
  13. 13.
    Terada K (2007) Fukugouzairyou no suutizairyousiken no susume sononi. Reinf Plast 53(5):246–253 (in Japanese)Google Scholar
  14. 14.
    Terada K, Inugai T, Hirayama N (2008a) A method of numerical material testing in nonlinear multiscale material analyses. Trans Jpn Soc Mech Eng Ser A 74(744):1084–1094 (in Japanese)CrossRefGoogle Scholar
  15. 15.
    Terada K, Inugai T, Hamana H, Miyori A, Hirayama N (2008b) Parameter identification for anisotropic hyperelastic materials by numerical material testing. Trans Jpn Soc Comput Eng Sci 20080024 (in Japanese)Google Scholar
  16. 16.
    Terada K, Hamana H, Hirayama N (2009) A method of viscoelastic two-scale analyses for FRP. Trans Jpn Soc Mech Eng Ser A 75(760):1674–1683 (in Japanese)CrossRefGoogle Scholar
  17. 17.
    Cybernet Systems Co. Ltd. (2018) Multiscale.Sim\({}^{\textregistered }\). Accessed 31 May 2018
  18. 18.
    Terada K, Hirayama N, Yamamoto K, Muramatsu M, Matsubara S, Nishi S (2016) Numerical plate testing for linear two scale analyses of composite plates with in-plane periodicity. Int J Numer Methods Eng 105:111–137MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goncalves BR, Jelovica J, Romanoff J (2016) A homogenization method for geometric nonlinear analysis of sandwich structures with initial imperfections. Int J Solids Struct 87:194–205CrossRefGoogle Scholar
  20. 20.
    Geers MGD, Coenen EWC, Kouznetsova VG (2007) Multi-scale computational homogenization of structured thin sheets. Model Simul Mater Sci Eng 15:393–404CrossRefGoogle Scholar
  21. 21.
    Coenen EWC, Kouznetsova VG, Geers MGD (2010) Computational homogenization for heterogeneous thin sheets. Int J Numer Methods Eng 83:1180–1205CrossRefGoogle Scholar
  22. 22.
    Cong Y, Nezamabadi S, Zahrouni H, Yvonnet J (2015) Multiscale computational homogenization of heterogeneous shells at small strains with extensions to finite displacements and buckling. Int J Numer Methods Eng 104:235–259MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mercatoris BCN, Massart TJ (2011) A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int J Numer Methods Eng 85:1177–1206CrossRefGoogle Scholar
  24. 24.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kiendle J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914MathSciNetCrossRefGoogle Scholar
  26. 26.
    Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289MathSciNetCrossRefGoogle Scholar
  27. 27.
    Buffa A, Sangalli G, Vázquez R (2010) Isogeometric analysis in electromagnetics: B-splines approximation. Comput Methods Appl Mech Eng 199:1143–1152MathSciNetCrossRefGoogle Scholar
  28. 28.
    Verhoosel CV, Scott MA, Hughes TJR, Borst R (2011) An isogeometric analysis approach to gradient damage models. Int J Numer Methods Eng 86:115–134MathSciNetCrossRefGoogle Scholar
  29. 29.
    Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199:3270–3296MathSciNetCrossRefGoogle Scholar
  30. 30.
    Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis for topology optimization with a phase field model. Arch Comput Methods Eng 19:427–465MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–741MathSciNetCrossRefGoogle Scholar
  32. 32.
    Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200:1100–1112MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lorenzis LD, Temizer I, Wriggers P, Zavarise GA (2011) Large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87:1278–1300MathSciNetzbMATHGoogle Scholar
  34. 34.
    Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128MathSciNetCrossRefGoogle Scholar
  35. 35.
    Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical mortar contact problems. Comput Methods Appl Mech Eng 274:192–212MathSciNetCrossRefGoogle Scholar
  36. 36.
    Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically enriched finite elements for frictional contact and mixed-mode debonding. Comput Methods Appl Mech Eng 284:781–806MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kruse R, Nguyen-Thanh N, Lorenzis LDe, Hughes TJR (2015) Isogeometric collocation for large deformation elasticity and frictional contact problems. Comput Methods Appl Mech Eng 296:73–112MathSciNetCrossRefGoogle Scholar
  38. 38.
    Matsubara S, Nishi S, Terada K (2017) On the treatment of heterogeneities and periodic boundary conditions for isogeometric homogenization analysis. Int J Numer Methods Eng 109:1523–1548MathSciNetCrossRefGoogle Scholar
  39. 39.
    Temizer I (2014) Computational homogenization of soft matter friction: isogeometric framework and elastic boundary layers. Int J Numer Methods Eng 100:953–981MathSciNetCrossRefGoogle Scholar
  40. 40.
    Fillep S, Mergheim J, Steinmann P (2013) Computational modeling and homogenization of technical textiles. Eng Struct 50:68–73CrossRefGoogle Scholar
  41. 41.
    Fillep S, Mergheim J, Steinmann P (2016) Toward an efficient two-scale approach to model technical textiles. Comput Mech 59:385–401MathSciNetCrossRefGoogle Scholar
  42. 42.
    Espadas-Escalante JJ, van Dijk NP, Isaksson P (2017) A study on the influence of boundary conditions in computational homogenization of periodic structures with application to woven composites. Compos Struct 160:529–537CrossRefGoogle Scholar
  43. 43.
    Durville D (2008) A finite element approach of the behaviour of woven materials at microscopic scale. Mechanics of microstructured solids. Springer, Berlin, pp 39–46zbMATHGoogle Scholar
  44. 44.
    Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3:1241–1252CrossRefGoogle Scholar
  45. 45.
    Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan H, Bazilevs Y, Rabczuk T (2017) Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput Methods Appl Mech Eng 316:1157–1178MathSciNetCrossRefGoogle Scholar
  46. 46.
    Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless contact. Comput Methods Appl Mech Eng 299:161–186MathSciNetCrossRefGoogle Scholar
  47. 47.
    Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems. Comput Methods Appl Mech Eng 301:242–258MathSciNetCrossRefGoogle Scholar
  48. 48.
    Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68:506–515CrossRefGoogle Scholar
  49. 49.
    Tapie E, Tan ESL, Guo YB, Shim VPW (2017) Effects of pre-tension and impact angle on penetration resistance of woven fabric. Int J Impact Eng 106:171–190CrossRefGoogle Scholar
  50. 50.
    Wriggers Computational Contact (2006) Mechanics. Springer, BerlinGoogle Scholar
  51. 51.
    Betsch P, Grunttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57–79MathSciNetCrossRefGoogle Scholar
  52. 52.
    Matsuda T, Nimiya Y, Ohno N, Tokuda M (2007) Elastic-viscoplastic behavior of plain-woven GFRP laminates: homogenization using a reduced domain of analysis. Compos Struct 79:493–500CrossRefGoogle Scholar
  53. 53.
    Bonet J, Burton AJ (1998) A simple orthotropic, transverly isotropic hyperelastic constitutive equation for large strain computations. Comput Methods Appl Mech Eng 162:151–164CrossRefGoogle Scholar
  54. 54.
    Sato M, Muramatsu M, Matsubara S, Nishi S, Terada K, Yashiro K, Kawada T (2017) Numerical plate testing for non-linear multi-scale analysis of plate-shaped device. J Jpn Soc Civ Eng Ser A2 (Appl Mech (AM)) 73(2):I\(\_\)283–I\(\_\)294Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringTohoku UniversitySendaiJapan
  2. 2.International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
  3. 3.Department of Mechanical EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations