Dynamic homogenization of resonant elastic metamaterials with space/time modulation

  • Chenchen Liu
  • Celia Reina
Original Paper


We present a variational multiscale strategy in the spirit of FE\(^2\) method for simulating the real time evolution of resonant elastic metamaterials with space/time modulation. The implicit time discretization used guarantees the stability of the numerical solution, while the accuracy is quantified by direct comparison with the response obtained via direct numerical simulation. The results showcase a remarkable accuracy of the method, even when the dynamic material properties drastically change over length scales that are equal to the macroscopic mesh size and time scales that are of the same order of magnitude than the external excitations. We further propose a strategy to identify the band gap structure of these metamaterials based on their real time response. The methodology is verified for spatially periodic time invariant systems via classical unit cell analyses in the frequency domain.


Coarse-graining FE\(^2\) Inertia effect Composites 



The authors acknowledge support from NSF Grant CMMI-1401537.


  1. 1.
    Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24MathSciNetCrossRefGoogle Scholar
  2. 2.
    Belytschko T, Hughes T (1983) Computational methods for transient analysis. Elsevier, North-HollandzbMATHGoogle Scholar
  3. 3.
    Celli P, Yousefzadeh B, Daraio C, Gonella S (2018) Exploring heterogeneity and disorder in tunable elastic metamaterials. J Acoust Soc Am 143(3):1917–1917CrossRefGoogle Scholar
  4. 4.
    Chen H, Chan C (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91(18):183518CrossRefGoogle Scholar
  5. 5.
    COMSOL Multiphysics 2017. v. 5.3. COMSOL AB, S.S. (2017)Google Scholar
  6. 6.
    Cummer SA, Schurig D (2007) One path to acoustic cloaking. New J Phys 9(3):45CrossRefGoogle Scholar
  7. 7.
    Deymier PA (2013) Acoustic metamaterials and phononic crystals, vol 173. Springer, BerlinGoogle Scholar
  8. 8.
    Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int J Numer Methods Eng 54(3):331–346MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A (2014) Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170):516–519CrossRefGoogle Scholar
  10. 10.
    Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solids 57(3):621–633CrossRefGoogle Scholar
  11. 11.
    Hu R, Oskay C (2018) Spatial-temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites. Comput Methods Appl Mech Eng 342:1–31MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, MineolaGoogle Scholar
  13. 13.
    Hughes TJ, Pister KS, Taylor RL (1979) Implicit–explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182CrossRefGoogle Scholar
  14. 14.
    Hussein MI, Frazier MJ (2010) Band structure of phononic crystals with general damping. J Appl Phys 108(9):093506CrossRefGoogle Scholar
  15. 15.
    Hussein MI, Frazier MJ (2013) Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib 332(20):4767–4774CrossRefGoogle Scholar
  16. 16.
    Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRefGoogle Scholar
  17. 17.
    Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50(25–26):4197–4216CrossRefGoogle Scholar
  18. 18.
    Khajehtourian R, Hussein MI (2014) Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv 4(12):124308CrossRefGoogle Scholar
  19. 19.
    Krödel S, Thomé N, Daraio C (2015) Wide band-gap seismic metastructures. Extreme Mech Lett 4:111–117CrossRefGoogle Scholar
  20. 20.
    Laude V (2015) Phononic crystals: artificial crystals for sonic, acoustic, and elastic waves, vol 26. Walter de Gruyter GmbH & Co KG, BerlinCrossRefGoogle Scholar
  21. 21.
    Liu C, Reina C (2016) Discrete averaging relations for micro to macro transition. J Appl Mech 83(8):081006CrossRefGoogle Scholar
  22. 22.
    Liu C, Reina C (2017) Variational coarse-graining procedure for dynamic homogenization. J Mech Phys Solids 104:187–206MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu C, Reina C (2018) Broadband locally resonant metamaterials with graded hierarchical architecture. J Appl Phys 123(9):095108CrossRefGoogle Scholar
  24. 24.
    Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRefGoogle Scholar
  25. 25.
    Lv H, Tian X, Wang MY, Li D (2013) Vibration energy harvesting using a phononic crystal with point defect states. Appl Phys Lett 102(3):034103CrossRefGoogle Scholar
  26. 26.
    Manimala JM, Sun C (2014) Microstructural design studies for locally dissipative acoustic metamaterials. J Appl Phys 115(2):023518CrossRefGoogle Scholar
  27. 27.
    Mercer B, Mandadapu KK, Papadopoulos P (2016) Homogenization of high-frequency wave propagation in linearly elastic layered media using a continuum Irving–Kirkwood theory. Int J Solids Struct 96:162–172CrossRefGoogle Scholar
  28. 28.
    Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50(10):2123–2167MathSciNetCrossRefGoogle Scholar
  29. 29.
    Miehe C, Schröder J, Becker M (2002) Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction. Comput Methods Appl Mech Eng 191(44):4971–5005MathSciNetCrossRefGoogle Scholar
  30. 30.
    Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171(3–4):387–418MathSciNetCrossRefGoogle Scholar
  31. 31.
    Milton GW, Willis JR (2007) On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A Math Phys Eng Sci 463(2079):855–880MathSciNetCrossRefGoogle Scholar
  32. 32.
    Molinari A, Mercier S (2001) Micromechanical modelling of porous materials under dynamic loading. J Mech Phys Solids 49(7):1497–1516CrossRefGoogle Scholar
  33. 33.
    Nassar H, Chen H, Norris A, Haberman M, Huang G (2017) Non-reciprocal wave propagation in modulated elastic metamaterials. Proc R Soc A 473:20170188MathSciNetCrossRefGoogle Scholar
  34. 34.
    Nassar H, He QC, Auffray N (2015) Willis elastodynamic homogenization theory revisited for periodic media. J Mech Phys Solids 77:158–178MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nassar H, Xu X, Norris A, Huang G (2017) Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J Mech Phys Solids 101:10–29MathSciNetCrossRefGoogle Scholar
  36. 36.
    Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94Google Scholar
  37. 37.
    Nezamabadi S, Yvonnet J, Zahrouni H, Potier-Ferry M (2009) A multilevel computational strategy for handling microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198(27–29):2099–2110CrossRefGoogle Scholar
  38. 38.
    Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171(3):419–444MathSciNetCrossRefGoogle Scholar
  39. 39.
    Özdemir I, Brekelmans W, Geers M (2008) FE-2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198(3):602–613MathSciNetCrossRefGoogle Scholar
  40. 40.
    Pham K, Kouznetsova V, Geers M (2013) Transient computational homogenization for heterogeneous materials under dynamic excitation. J Mech Phys Solids 61(11):2125–2146MathSciNetCrossRefGoogle Scholar
  41. 41.
    Popa BI, Cummer SA (2014) Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 5:3398CrossRefGoogle Scholar
  42. 42.
    Radovitzky R, Ortiz M (1999) Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput Methods Appl Mech Eng 172(1):203–240MathSciNetCrossRefGoogle Scholar
  43. 43.
    Reina C (2011) Multiscale modeling and simulation of damage by void nucleation and growth. Ph.D. thesis, California Institute of TechnologyGoogle Scholar
  44. 44.
    Reina C, Li B, Weinberg K, Ortiz M (2013) A micromechanical model of distributed damage due to void growth in general materials and under general deformation histories. Int J Numer Methods Eng 93(6):575–611MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ricker S, Mergheim J, Steinmann P (2009) On the multiscale computation of defect driving forces. Int J Multiscale Comput Eng 7(5):457–474CrossRefGoogle Scholar
  46. 46.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Materialia 58(4):1152–1211CrossRefGoogle Scholar
  47. 47.
    Schröder J, Labusch M, Keip MA (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE\(^2\)-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sigmund O (2009) Systematic design of metamaterials by topology optimization. In: IUTAM symposium on modelling nanomaterials and nanosystems, pp 151–159. SpringerGoogle Scholar
  49. 49.
    Subbaraj K, Dokainish M (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRefGoogle Scholar
  50. 50.
    Verhoosel CV, Remmers JJ, Gutiérrez MA, De Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8–9):1155–1179CrossRefGoogle Scholar
  51. 51.
    Vila J, Pal RK, Ruzzene M, Trainiti G (2017) A Bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties. J Sound Vib 406:363–377CrossRefGoogle Scholar
  52. 52.
    Zanjani MB, Davoyan AR, Engheta N, Lukes JR (2015) NEMS with broken T symmetry: graphene based unidirectional acoustic transmission lines. Sci Rep 5:9926CrossRefGoogle Scholar
  53. 53.
    Zanjani MB, Davoyan AR, Mahmoud AM, Engheta N, Lukes JR (2014) One-way phonon isolation in acoustic waveguides. Appl Phys Lett 104(8):081905CrossRefGoogle Scholar
  54. 54.
    Zhang P, To AC (2013) Broadband wave filtering of bioinspired hierarchical phononic crystal. Appl Phys Lett 102(12):121910CrossRefGoogle Scholar
  55. 55.
    Zhu R, Liu X, Hu G, Sun C, Huang G (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333(10):2759–2773CrossRefGoogle Scholar
  56. 56.
    Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, BerlinzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations