Nitsche’s method for finite deformation thermomechanical contact problems
- 357 Downloads
- 1 Citations
Abstract
This paper presents an extension of Nitsche’s method to finite deformation thermomechanical contact problems including friction. The mechanical contact constraints, i.e. non-penetration and Coulomb’s law of friction, are introduced into the weak form using a stabilizing consistent penalty term. The required penalty parameter is estimated with local generalized eigenvalue problems, based on which an additional harmonic weighting of the boundary traction is introduced. A special focus is put on the enforcement of the thermal constraints at the contact interface, namely heat conduction and frictional heating. Two numerical methods to introduce these effects are presented, a substitution method as well as a Nitsche-type approach. Numerical experiments range from two-dimensional frictionless thermo-elastic problems demonstrating optimal convergence rates to three-dimensional thermo-elasto-plastic problems including friction.
Keywords
Finite deformation contact Frictional contact Thermo-structure-interaction Nitsche’s methodNotes
References
- 1.Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust Nitsches formulation for interface problems. Comput Method Appl M 225:44–54MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Ball JM (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Baumberger T, Berthoud P, Caroli C (1999) Physical analysis of the state-and rate-dependent friction law. ii. dynamic friction. Phys Rev B 60(6):3928CrossRefGoogle Scholar
- 4.Burman E, Zunino P (2011) Numerical approximation of large contrast problems with the unfitted Nitsche method. In: Blowey J, Jensen M (eds) Frontiers in numerical analysis-Durham 2010 Lecture notes in computational science and engineering, vol 85. Springer, Berlin, pp 227–282CrossRefGoogle Scholar
- 5.Chouly F (2014) An adaptation of Nitsches method to the Tresca friction problem. J Math Anal Appl 411(1):329–339MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Chouly F, Hild P (2013) A Nitsche-based method for unilateral contact problems: numerical analysis. SIAM J Numer Anal 51(2):1295–1307MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Chouly F, Hild P, Renard Y (2015) Symmetric and non-symmetric variants of Nitsches method for contact problems in elasticity: theory and numerical experiments. Math Comput 84(293):1089–1112MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, HobokenzbMATHCrossRefGoogle Scholar
- 9.Curnier A, He QC, Klarbring A (1995) Continuum mechanics modelling of large deformation contact with friction. In: Raous M, Jean M, Moreau JJ (eds) Contact mechanics. Springer, Berlin, pp 145–158CrossRefGoogle Scholar
- 10.Danowski C, Gravemeier V, Yoshihara L, Wall WA (2013) A monolithic computational approach to thermo-structure interaction. Int J Numer Methods Eng 95(13):1053–1078MathSciNetzbMATHCrossRefGoogle Scholar
- 11.De Saracibar CA (1998) Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Arch Comput Method E 5(3):243–301MathSciNetCrossRefGoogle Scholar
- 12.Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric analysis and thermomechanical mortar contact problems. Comput Method Appl M 274:192–212MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Methods Eng 78(2):229–252MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Farah P, Popp A, Wall WA (2015) Segment-based versus element-based integration for mortar methods in computational contact mechanics. Comput Mech 55(1):209–228MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng 84(5):543–571MathSciNetzbMATHGoogle Scholar
- 16.Griebel M, Schweitzer MA (2003) A particle-partition of unity method part V: boundary conditions. In: Hildebrandt S, Karcher H (eds) Geometric analysis and nonlinear partial differential equations. Springer, Berlin, pp 519–542CrossRefGoogle Scholar
- 17.Hager C, Wohlmuth B (2009) Nonlinear complementarity functions for plasticity problems with frictional contact. Comput Method Appl M 198(41–44):3411–3427MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt 28(2):183–206MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Hansen G (2011) A Jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. J Comput Phys 230(17):6546–6562MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, HobokenzbMATHGoogle Scholar
- 21.Hüeber S, Stadler G, Wohlmuth BI (2008) A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. J Sci Comput 30(2):572–596MathSciNetzbMATHGoogle Scholar
- 22.Hüeber S, Wohlmuth BI (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Method Appl M 194(27–29):3147–3166MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Hüeber S, Wohlmuth BI (2009) Thermo-mechanical contact problems on non-matching meshes. Comput Method Appl M 198(15–16):1338–1350zbMATHCrossRefGoogle Scholar
- 24.Johansson L, Klarbring A (1993) Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Comput Method Appl M 105(2):181–210MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Juntunen M, Stenberg R (2009) Nitsches method for general boundary conditions. Math Comput 78(267):1353–1374MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Khoei A, Saffar H, Eghbalian M (2015) An efficient thermo-mechanical contact algorithm for modeling contact-impact problems. Asian J Civ Eng (Build Hous) 16(5):681–708Google Scholar
- 27.Laursen TA (2002) Computational contact and impact mechanics. Springer, BerlinzbMATHGoogle Scholar
- 28.Mlika R, Renard Y, Chouly F (2017) An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact. Comput Method Appl M 325:265–288MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh Math Semin Univ Hambg 36(1):9–15zbMATHCrossRefGoogle Scholar
- 30.Oancea VG, Laursen TA (1997) A finite element formulation of thermomechanical rate-dependent frictional sliding. Int J Numer Methods Eng 40(23):4275–4311zbMATHCrossRefGoogle Scholar
- 31.Pantuso D, Bathe KJ, Bouzinov PA (2000) A finite element procedure for the analysis of thermo-mechanical solids in contact. Comput Struct 75(6):551–573CrossRefGoogle Scholar
- 32.Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79(11):1354–1391MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng 83(11):1428–1465MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Poulios K, Renard Y (2015) An unconstrained integral approximation of large sliding frictional contact between deformable solids. Comput Struct 153:75–90CrossRefGoogle Scholar
- 35.Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58(1):353–367MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Renard Y (2013) Generalized Newtons methods for the approximation and resolution of frictional contact problems in elasticity. Comput Method Appl M 256:38–55MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Sauer RA, De Lorenzis L (2015) An unbiased computational contact formulation for 3D friction. Int J Numer Methods Eng 101(4):251–280MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Seitz A, Farah P, Kremheller J, Wohlmuth BI, Wall WA, Popp A (2016) Isogeometric dual mortar methods for computational contact mechanics. Comput Method Appl M 301:259–280MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Seitz A, Wall WA, Popp A (2018) A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Adv Model Simul Eng Sci 5(1):5CrossRefGoogle Scholar
- 40.Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Method Appl M 98(1):41–104zbMATHCrossRefGoogle Scholar
- 41.de Souza Neto EA, Perić D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Temizer I (2014) Multiscale thermomechanical contact: computational homogenization with isogeometric analysis. Int J Numer Methods Eng 97(8):582–607MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Temizer I, Wriggers P, Hughes T (2011) Contact treatment in isogeometric analysis with NURBS. Comput Method Appl M 200(9–12):1100–1112MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Verdugo F, Wall WA (2016) Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes. Comput Method Appl M 310:335–366MathSciNetCrossRefGoogle Scholar
- 45.Wall WA, Ager C, Grill M, Kronbichler M, Popp A, Schott B, Seitz A (2018) BACI: A multiphysics simulation environment. Institute for Computational Mechanics, Technical University of Munich, Tech. repGoogle Scholar
- 46.Wiesner T, Popp A, Gee M, Wall W (2018) Algebraic multigrid methods for dual mortar finite element formulations in contact mechanics. Int J Numer Methods Eng 114(4):399–430MathSciNetCrossRefGoogle Scholar
- 47.Winter M, Schott B, Massing A, Wall W (2018) A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions. Comput Method Appl M 330:220–252MathSciNetCrossRefGoogle Scholar
- 48.Wohlmuth BI (2011) Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numer 20:569–734MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Wohlmuth BI, Popp A, Gee MW, Wall WA (2012) An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Comput Mech 49:735–747MathSciNetzbMATHCrossRefGoogle Scholar
- 50.Wriggers P, Laursen TA (2006) Computational contact mechanics, vol 30167. Springer, New YorkzbMATHCrossRefGoogle Scholar
- 51.Wriggers P, Miehe C (1994) Contact constraints within coupled thermomechanical analysis—a finite element model. Comput Method Appl M 113(3):301–319MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41(3):407–420zbMATHCrossRefGoogle Scholar
- 53.Xing H, Makinouchi A (2002) Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Comput Method Appl M 191(37):4193–4214zbMATHCrossRefGoogle Scholar
- 54.Zavarise G, Wriggers P, Stein E, Schrefler B (1992) Real contact mechanisms and finite element formulation—a coupled thermomechanical approach. Int J Numer Methods Eng 35(4):767–785zbMATHCrossRefGoogle Scholar