Advertisement

Computational Mechanics

, Volume 63, Issue 5, pp 971–984 | Cite as

Heat capacity and thermal expansion of metal crystalline materials based on dynamic thermal vibration

  • Jieqiong ZhangEmail author
  • Junzhi Cui
  • Zihao YangEmail author
  • Yifan Yu
Original Paper
  • 86 Downloads

Abstract

A novel approach based on dynamic thermal vibration is proposed to calculate the heat capacity and thermal expansion coefficient (TEC) for metal crystalline materials from 0 K to the melting point. The motion of metal atomic clusters is decomposed into structural deformation and thermal vibration. Then thermal vibration equations are established by the fourth-order Taylor expansion of Hamiltonian at the transient structural deformation position \({\bar{\mathbf {x}}}\). As a result, the thermal vibration frequencies dynamically change with the structural deformation positions and temperatures. A parameter \({\bar{\delta }} ({\bar{\mathbf {x}}}, T)\) is newly introduced to illustrate how the thermal vibration frequencies vary with the temperature T. Besides, the modified temperature-dependent Grüneisen parameter \({\bar{\gamma }} ({\bar{\mathbf {x}}}, T)\) is given. Finally, the formulae of heat capacity and TEC for metal crystalline materials are derived from the dynamic thermal vibration frequencies and \({\bar{\delta }} ({\bar{\mathbf {x}}}, T)\) as well as \({\bar{\gamma }} ({\bar{\mathbf {x}}}, T)\). The numerical results of heat capacity and TEC for metals Cu, Al, Au, Ag, Ni, Pd, Pt and Pb show a temperature dependence and agree well with the experimental data from 0 K to the melting point. This work suggests an efficient approach to calculate thermodynamic properties of metal materials for a wide range of temperatures, up to the melting point.

Keywords

Metal crystalline materials Heat capacity Thermal expansion coefficient Dynamic thermal vibration Temperature dependence 

Notes

Acknowledgements

This research was financially supported by the National Key Research and Development Program of China (2016YFB1100602), National Natural Science Foundation of China (51739007, 11501449), the Fundamental Research Funds for the Central Universities (3102017zy043), and the China Postdoctoral Science Foundation (2018M633569).

References

  1. 1.
    Born M, Huang K (1955) Dynamical theory of crystal lattices. Oxford and Clarendon Press, LondonCrossRefzbMATHGoogle Scholar
  2. 2.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New YorkzbMATHGoogle Scholar
  3. 3.
    Wallace DC (2002) Statistical physics of crystals and liquids: a guide to highly accurate equations of state. World Scientific, SingaporezbMATHGoogle Scholar
  4. 4.
    Krishnan RS, Srinivasan R, Devanarayanan S (2013) Thermal expansion of crystals: international series in the science of the solid state, vol 12. Pergamom Press Ltd, OxfordGoogle Scholar
  5. 5.
    Barron THK, White GK (2012) Heat capacity and thermal expansion at low temperatures. Springer, New YorkGoogle Scholar
  6. 6.
    van de Walle A, Ceder G (2002) The effect of lattice vibrations on substitutional alloy thermodynamics. Rev Mod Phys 74:11–45CrossRefGoogle Scholar
  7. 7.
    Fultz B (2010) Vibrational thermodynamics of materials. Prog Mater Sci 55(4):247–352CrossRefGoogle Scholar
  8. 8.
    Moruzzi VL, Janak JF, Schwarz K (1988) Calculated thermal properties of metals. Phys Rev B 37:790–799CrossRefGoogle Scholar
  9. 9.
    Gan CK, Soh JR, Liu Y (2015) Large anharmonic effect and thermal expansion anisotropy of metal chalcogenides: the case of antimony sulfide. Phys Rev B 92:235202CrossRefGoogle Scholar
  10. 10.
    Glensk A, Grabowski B, Hickel T, Neugebauer J (2015) Understanding anharmonicity in fcc materials: from its origin to ab initio strategies beyond the quasiharmonic approximation. Phys Rev Lett 114:195901CrossRefGoogle Scholar
  11. 11.
    Grabowski B, Ismer L, Hickel T, Neugebauer J (2009) Ab initio up to the melting point: anharmonicity and vacancies in aluminum. Phys Rev B 79:134106CrossRefGoogle Scholar
  12. 12.
    Hellman O, Abrikosov IA, Simak SI (2011) Lattice dynamics of anharmonic solids from first principles. Phys Rev B 84:180301CrossRefGoogle Scholar
  13. 13.
    Monserrat B, Drummond ND, Needs RJ (2013) Anharmonic vibrational properties in periodic systems: energy, electron–phonon coupling, and stress. Phys Rev B 87:144302CrossRefGoogle Scholar
  14. 14.
    Bansal D, Aref A, Dargush G, Delaire O (2016) Modeling non-harmonic behavior of materials from experimental inelastic neutron scattering and thermal expansion measurements. J Phys Condens Matter 28(38):385201CrossRefGoogle Scholar
  15. 15.
    Narasimhan S, De Gironcoli S (2002) Ab initio calculation of the thermal properties of Cu: performance of the LDA and GGA. Phys Rev B 65(6):064302CrossRefGoogle Scholar
  16. 16.
    Mounet N, Marzari N (2005) First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys Rev B 71(20):205214CrossRefGoogle Scholar
  17. 17.
    Yun Y, Legut D, Oppeneer PM (2012) Phonon spectrum, thermal expansion and heat capacity of UO\(_{2}\) from first-principles. J Nucl Mater 426(1):109–114CrossRefGoogle Scholar
  18. 18.
    Allen PB (2015) Anharmonic phonon quasiparticle theory of zero-point and thermal shifts in insulators: heat capacity, bulk modulus, and thermal expansion. Phys Rev B 92:064106CrossRefGoogle Scholar
  19. 19.
    Liu ZJ, Song T, Sun XW, Ma Q, Wang T, Guo Y (2017) Thermal expansion, heat capacity and Grneisen parameter of iridium phosphide Ir\(_2\)P from quasi-harmonic Debye mode. Solid State Commun 253:19–23CrossRefGoogle Scholar
  20. 20.
    Li H, Cui J, Li B (2015) A thermo-mechnical coupling atom–continuum couple model and it algorithm. Appl Math Mech Engl 36(4):343–351Google Scholar
  21. 21.
    Xiang M, Cui J, Li B, Tian X (2012) Atom-continuum coupled model for thermo-mechanical behavior of materials in micro–nano scales. Sci China Phys Mech 55(6):1125–1137CrossRefGoogle Scholar
  22. 22.
    Li B, Cui J, Tian X, Xingang Y, Xiang M (2014) The calculation of mechanical behavior for metallic devices at nano-scale based on atomic–continuum coupled model. Comput Mater Sci 94(11):73–84CrossRefGoogle Scholar
  23. 23.
    To AC, Liu WK, Kopacz A (2008) A finite temperature continuum theory based on interatomic potential in crystalline solids. Comput Mech 42(4):531–541CrossRefzbMATHGoogle Scholar
  24. 24.
    Gallavotti G (2013) Statistical mechanics. Springer, New YorkzbMATHGoogle Scholar
  25. 25.
    Arnol’d Vladimir Igorevich (2013) Mathematical methods of classical mechanics. Springer, New YorkzbMATHGoogle Scholar
  26. 26.
    Kovacic I, Brennan MJ (2011) The Duffing equation: nonlinear oscillators and their behaviour. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu S, Zuntao F, Liu S, Zhao Q (2001) Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys Lett A 289(1):69–74MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Parkes EJ, Duffy BR, Abbott PC (2002) The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys Lett A 295(56):280–286MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63:224106CrossRefGoogle Scholar
  30. 30.
    Lee BJ, Shim JH, Baskes MI (2003) Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method. Phys Rev B 68:144112CrossRefGoogle Scholar
  31. 31.
    Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983–7991CrossRefGoogle Scholar
  32. 32.
    Williams PL, Mishin Y, Hamilton JC (2006) An embedded-atom potential for the Cu–Ag system. Model Simul Mater Sci 14(5):817CrossRefGoogle Scholar
  33. 33.
    Gray DE (1972) American institute of physics handbook. McGraw-Hill, New YorkzbMATHGoogle Scholar
  34. 34.
    Touloukian YS, Kirby RK, Taylor RE, Desai PD (1975) Thermal expansion: metallic elements and alloys, vol 12. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.LSEC, ICMSEC, Academy of Mathematics and Systems ScienceChinese Academy SciencesBeijingChina

Personalised recommendations