Advertisement

Computational Mechanics

, Volume 63, Issue 5, pp 949–970 | Cite as

Investigation of heat source modeling for selective laser melting

  • H. WesselsEmail author
  • T. Bode
  • C. Weißenfels
  • P. Wriggers
  • T. I. Zohdi
Original Paper
  • 293 Downloads

Abstract

Selective Laser Melting (SLM) is an emerging Additive Manufacturing technology for metals. Complex three dimensional parts can be generated from a powder bed by locally melting the desired portions layer by layer. The necessary heat is provided by a laser. The laser–matter interaction is a crucial physical phenomenon in the SLM process. Various modeling approaches with different degrees of complexity exist in the literature to represent the laser–matter interaction within a numerical framework. Often, the laser energy is simply distributed into a specified volume. A more precise approach is ray tracing. The laser beam can be divided into moving discrete energy portions (rays) that are traced in space and time. In order to compute the reflection and absorption usually a triangulation of the free surface is conducted. Within meshfree methods, this is a very expensive operation. In this work, a computationally efficient algorithm is developed which avoids triangulation and can easily be combined with meshfree methods. Here, the suggested ray tracing algorithm is exemplary coupled with the stabilized Optimal Transportation Meshfree Method. The importance of ray tracing is evaluated by simulating the fusion of metal powder particles. A comparison of the results with a volumetric heat source approach shows that ray tracing significantly improves the accuracy of absorption and vaporization.

Keywords

Additive manufacturing Selective laser melting Ray tracing Optimal Transportation Meshfree method 

Notes

Acknowledgements

This work was supported by the compute cluster, which is funded by the Leibniz Universität Hannover, the Lower Saxony Ministry of Science and Culture (MWK) and the German Research Association (DFG). Henning Wessels acknowledges the generous support of the Fulbright association for an internship in the group of Prof. Tarek I. Zohdi at the University of California, Berkeley.

References

  1. 1.
    Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67(2):318–330.  https://doi.org/10.1016/j.camwa.2013.10.001 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anisimov SI, Khokhlov VA (1995) Instabilities in Laser-matter interaction. CRC Press, Boca Raton. ISBN 9780849386602Google Scholar
  3. 3.
    Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202.  https://doi.org/10.1002/nme.1534 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonacina C, Comini G, Fasano A, Primicerio M (1973) Numerical solution of phase-change problems. Int J Heat Mass Transf 16(10):1825–1832.  https://doi.org/10.1016/0017-9310(73)90202-0 CrossRefGoogle Scholar
  5. 5.
    Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen L, Lee JH, Chen C-F (2012) On the modeling of surface tension and its applications by the generalized interpolation material point method. Comput Model Eng Sci 86(3):199–223zbMATHGoogle Scholar
  7. 7.
    Chiumenti M (1998) Constitutive modeling and numerical analysis of thermo-mechanical phase change systems. Ph.D. Dissertation, UPC Barcelona TechGoogle Scholar
  8. 8.
    Fried I, Rheinboldt W (2014) Numerical solution of differential equations. Computer science and applied mathematics. Elsevier, Burlington. http://gbv.eblib.com/patron/FullRecord.aspx?p=1901577. ISBN 0-12-267780-3
  9. 9.
    Ganeriwala R, Zohdi TI (2016) A coupled discrete element-finite difference model of selective laser sintering. Granul Matter 18(2):21.  https://doi.org/10.1007/s10035-016-0626-0 CrossRefGoogle Scholar
  10. 10.
    Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305.  https://doi.org/10.1007/BF02667333 CrossRefGoogle Scholar
  11. 11.
    Goldak JA, Akhlaghi M (2005) Computational welding mechanics. Springer, New York. ISBN 978-0387-23287-4Google Scholar
  12. 12.
    Griebel M, Knapek S, Zumbusch G (2007) Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications; with 63 tables, volume 5 of SpringerLink: Springer e-Books. Springer, Berlin [u.a.], [online-ausg.] edition. ISBN 978-3-540-68095-6Google Scholar
  13. 13.
    Gross H (2005) Fundamentals of technical optics. Volume 1 of handbook of optical systems. Wiley, New York. ISBN 978-3-527-40377-6Google Scholar
  14. 14.
    Gu DD, Meiners W, Wissenbach K, Poprawe R (2013) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57(3):133–164.  https://doi.org/10.1179/1743280411Y.0000000014 CrossRefGoogle Scholar
  15. 15.
    Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131(7):072101.  https://doi.org/10.1115/1.3109245 CrossRefGoogle Scholar
  16. 16.
    Hecht J (2011) Understanding lasers: an entry-level guide, volume v.21 of IEEE press understanding science and technology series. Wiley, s.l., 3. aufl. edition. http://gbv.eblib.com/patron/FullRecord.aspx?p=4032828. ISBN 9780470088906
  17. 17.
    Hu H, Eberhard P (2016) Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. Comput Part Mech 68(2):849.  https://doi.org/10.1007/s40571-016-0140-5 Google Scholar
  18. 18.
    Hu H, Fetzer F, Berger P, Eberhard P (2016) Simulation of laser welding using advanced particle methods. GAMM-Mitteilungen 39(2):149–169.  https://doi.org/10.1002/gamm.201610010 CrossRefGoogle Scholar
  19. 19.
    Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover, Mineola, NY, reprint edition. http://www.loc.gov/catdir/description/dover031/00038414.html. ISBN 0-486-41181-8
  20. 20.
    Khairallah SA, Anderson AT (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214(11):2627–2636.  https://doi.org/10.1016/j.jmatprotec.2014.06.001 CrossRefGoogle Scholar
  21. 21.
    Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45.  https://doi.org/10.1016/j.actamat.2016.02.014 CrossRefGoogle Scholar
  22. 22.
    Ki H, Mazumder J, Mohanty PS (2002) Modeling of laser keyhole welding: part I: mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections, and free surface evolution. Metall Mater Trans A 33(6):1817–1830.  https://doi.org/10.1007/s11661-002-0190-6 CrossRefGoogle Scholar
  23. 23.
    Li B, Habbal F, Ortiz M (2010) Optimal transportation meshfree approximation schemes for fluid and plastic flows. Int J Numer Methods Eng 83(12):1541–1579.  https://doi.org/10.1002/nme.2869 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lu SCH, Pister KS (1975) Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int J Solids Struct 11(7–8):927–934.  https://doi.org/10.1016/0020-7683(75)90015-3 CrossRefzbMATHGoogle Scholar
  25. 25.
    Muhieddine M, Canot É, March R (2009) Various approaches for solving problems in heat conduction with phase change. Int J Finite Vol 6(1):66–85MathSciNetGoogle Scholar
  26. 26.
    Mumtaz KA, Hopkinson N (2010) Selective laser melting of thin wall parts using pulse shaping. J Mater Process Technol 210(2):279–287.  https://doi.org/10.1016/j.jmatprotec.2009.09.011 CrossRefGoogle Scholar
  27. 27.
    Rosolen A, Millán D, Arroyo M (2009) On the optimum support size in meshfree methods: a variational adaptivity approach with maximum-entropy approximants. Int J Numer Methods Eng 139(1):868–895.  https://doi.org/10.1002/nme.2793 zbMATHGoogle Scholar
  28. 28.
    The International Nickel Company (ed) (1968) Mechanical and physical properties of the austenitic chromium–nickel stainless steels at elevated temperatures, 3 edn. New YorkGoogle Scholar
  29. 29.
    Weißenfels C, Wriggers P (2018) Stabilization algorithm for the optimal transportation meshfree approximation scheme. Comput Methods Appl Mech Eng 329:421–443.  https://doi.org/10.1016/j.cma.2017.09.031 MathSciNetCrossRefGoogle Scholar
  30. 30.
    Wessels H, Weißenfels C, Wriggers P (2018) Metal particle fusion analysis for additive manufacturing using the stabilized optimal transportation meshfree method. Comput Methods Appl Mech Eng 339:91–114.  https://doi.org/10.1016/j.cma.2018.04.042 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wriggers P (2001) Nichtlineare finite-element-methoden. Springer, Berlin.  https://doi.org/10.1007/978-3-642-56865-7. ISBN 978-3-642-56865-7
  32. 32.
    Wriggers P (2006) Computational contact mechanics. Springer, Berlin.  https://doi.org/10.1007/978-3-540-32609-0. ISBN 978-3-540-32608-3
  33. 33.
    Yan W, Smith J, Ge W, Lin F, Liu WK (2015) Multiscale modeling of electron beam and substrate interaction: a new heat source model. Comput Mech 56(2):265–276.  https://doi.org/10.1007/s00466-015-1170-1 CrossRefzbMATHGoogle Scholar
  34. 34.
    Yan W, Ge W, Qian Y, Lin S, Zhou B, Wagner GJ, Lin F, Liu WK (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Materialia.  https://doi.org/10.1016/j.actamat.2017.05.061 Google Scholar
  35. 35.
    Zohdi TI (2006a) On the optical thickness of disordered particulate media. Mech Mater 38(8–10):969–981.  https://doi.org/10.1016/j.mechmat.2005.06.025 CrossRefGoogle Scholar
  36. 36.
    Zohdi TI (2006b) Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput Methods Appl Mech Eng 195(41–43):5813–5830.  https://doi.org/10.1016/j.cma.2005.04.023 CrossRefzbMATHGoogle Scholar
  37. 37.
    Zohdi TI (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive fdtd. Comput Methods Appl Mech Eng 199(49–52):3250–3269.  https://doi.org/10.1016/j.cma.2010.06.032 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zohdi TI (2013) Rapid simulation of laser processing of discrete particulate materials. Arch Comput Methods Eng 20(4):309–325.  https://doi.org/10.1007/s11831-013-9092-6 CrossRefGoogle Scholar
  39. 39.
    Zohdi TI (2014) Additive particle deposition and selective laser processing—a computational manufacturing framework. Comput Mech 54(1):171–191.  https://doi.org/10.1007/s00466-014-1012-6 MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zohdi TI (2015a) Modeling of the scattering response of particulate obscurant clouds. Int J Eng Sci 89:75–85.  https://doi.org/10.1016/j.ijengsci.2014.12.002 CrossRefzbMATHGoogle Scholar
  41. 41.
    Zohdi TI (2015b) On the thermal response of a surface deposited laser-irradiated powder particle. CIRP J Manuf Sci Technol 10:77–83.  https://doi.org/10.1016/j.cirpj.2015.05.001 CrossRefGoogle Scholar
  42. 42.
    Zohdi TI (2017a) Modeling and simulation of laser processing of particulate-functionalized materials. Arch Comput Methods Eng 24(1):89–113.  https://doi.org/10.1007/s11831-015-9160-1 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zohdi TI (2017b) On high-frequency radiation scattering sensitivity to surface roughness in particulate media. Comput Part Mech 4(1):13–22.  https://doi.org/10.1007/s40571-016-0118-3 CrossRefGoogle Scholar
  44. 44.
    Zohdi TI (2017c) Construction of a rapid simulation design tool for thermal responses to laser-induced feature patterns. Comput Mech 295(7):315.  https://doi.org/10.1007/s00466-017-1503-3 Google Scholar
  45. 45.
    Zohdi TI (2018) Laser-induced heating of dynamic particulate depositions in additive manufacturing. Comput Methods Appl Mech Eng 331:232–258.  https://doi.org/10.1016/j.cma.2017.11.003 MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zohdi TI, Kuypers FA (2006) Modelling and rapid simulation of multiple red blood cell light scattering. J R Soc Interface 3(11):823–831.  https://doi.org/10.1098/rsif.2006.0139 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • H. Wessels
    • 1
    Email author
  • T. Bode
    • 1
  • C. Weißenfels
    • 1
  • P. Wriggers
    • 1
  • T. I. Zohdi
    • 2
  1. 1.Institute of Continuum MechanicsLeibniz University of HannoverHannoverGermany
  2. 2.Department of Mechanical Engineering6117 Etcheverry Hall, University of CaliforniaBerkeleyUSA

Personalised recommendations