Advertisement

Computational modeling of the large deformation and flow of viscoelastic polymers

  • Tong Shen
  • Rong Long
  • Franck Vernerey
Original Paper
  • 31 Downloads

Abstract

Deformation of soft polymeric materials often involves complex nonlinear or transient mechanical behaviors. This is due to the dynamic behaviors of polymer chains at the molecular level within the polymer network. In this paper, we present a computational formulation to describe the transient behavior (e.g., viscoelasticity) of soft polymer networks with dynamic bonds undergoing large to extreme deformation. This formulation is based on an Eulerian description of kinematics and a theoretical framework that directly connects the molecular-level kinetics of dynamic bonds to the macroscopic mechanical behavior of the material. An extended finite element method is used to discretize the field variables and the governing equations in an axisymmetric domain. In addition to validating the framework, this model is used to study how the chain dynamics affect the macroscopic response of material as they undergo a combination of flow and elasticity. The problems of cavitation rheology and polymer indentation under extreme deformation are investigated in this context.

Notes

Acknowledgements

The author acknowledges the support of the National Science Foundation under the NSF CAREER award 1350090. Research reported in this publication was also partially supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number 1R01AR065441. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Akalp U, Bryant SJ, Vernerey FJ (2016) Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model. Soft Matter 12(36):7505–7520CrossRefGoogle Scholar
  2. 2.
    Asbury JB, Steinel T, Fayer MD (2004) Hydrogen bond networks: structure and evolution after hydrogen bond breaking. J Phys Chem B 108(21):6544–6554CrossRefGoogle Scholar
  3. 3.
    Bathe K-J (2001) The inf–sup condition and its evaluation for mixed finite element methods. Comput Struct 79(2):243–252MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bathe K-J (2006) Finite element procedures. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  5. 5.
    Bathe K-J, Wilson EL (1976) Numerical methods in finite element analysis, vol 197. Prentice-Hall, Upper Saddle RiverMATHGoogle Scholar
  6. 6.
    Benet E, Vernerey FJ (2016) Mechanics and stability of vesicles and droplets in confined spaces. Phys Rev E 94(6):062613CrossRefGoogle Scholar
  7. 7.
    Benson DJ (1992) Computational methods in lagrangian and eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bergström JS, Boyce MC (2001) Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech Mater 33(9):523–530CrossRefGoogle Scholar
  9. 9.
    Chapelle D, Bathe K-J (1993) The inf–sup test. Comput Struct 47(4–5):537–545MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):4CrossRefGoogle Scholar
  11. 11.
    Choi YJ, Hulsen MA (2012) Alignment of particles in a confined shear flow of a viscoelastic fluid. J Non-Newton Fluid Mech 175:89–103CrossRefGoogle Scholar
  12. 12.
    Choi Y, Hulsen MA, Meijer HEH (2010) An extended finite element method for the simulation of particulate viscoelastic flows. J Non-Newton Fluid Mech 165(11–12):607–624CrossRefMATHGoogle Scholar
  13. 13.
    Choi YJ, Hulsen MA, Meijer HEH (2012) Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method. Comput Fluids 57:183–194MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Christensen RM, Freund LB (1971) Theory of viscoelasticity. J Appl Mech 38:720CrossRefGoogle Scholar
  15. 15.
    De Gennes PG, Leger L (1982) Dynamics of entangled polymer chains. Ann Rev Phys Chem 33(1):49–61CrossRefGoogle Scholar
  16. 16.
    de Gennes PG (1992) Reptation of a polymer chain in the presence of fixed obstacles. Simple Views Condens Matter 4:148Google Scholar
  17. 17.
    Doi M (2013) Soft matter physics. Oxford University Press, OxfordCrossRefMATHGoogle Scholar
  18. 18.
    Donea J, Giuliani S, Halleux J-P (1982) An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723CrossRefMATHGoogle Scholar
  19. 19.
    Dowling NE (2012) Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. Pearson, PearsonGoogle Scholar
  20. 20.
    Duddu R, Lavier LL, Hughes TJR, Calo VM (2012) A finite strain Eulerian formulation for compressible and nearly incompressible hyperelasticity using high-order b-spline finite elements. Int J Numer Methods Eng 89(6):762–785MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Étienne J, Hinch EJ, Li J (2006) A Lagrangian–Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material. J Non-Newton Fluid Mech 136(2–3):157–166CrossRefMATHGoogle Scholar
  22. 22.
    Fakhouri S, Hutchens SB, Crosby AJ (2015) Puncture mechanics of soft solids. Soft Matter 11(23):4723–4730CrossRefGoogle Scholar
  23. 23.
    Farsad M, Vernerey FJ (2012) An XFEM-based numerical strategy to model mechanical interactions between biological cells and a deformable substrate. Int J Numer Methods Eng 92(3):238–267MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Farsad M, Vernerey FJ, Park HS (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Methods Eng 84(12):1466–1489MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Foucard L, Aryal A, Duddu R, Vernerey F (2015) A coupled Eulerian–Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries. Comput Methods Appl Mech Eng 283:280–302MathSciNetCrossRefGoogle Scholar
  26. 26.
    Foucard L, Vernerey FJ, and (2016) A particle-based moving interface method (PMIM) for modeling the large deformation of boundaries in soft matter systems. Int J Numer Methods Eng 107(11):923–946MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Foucard LC, Pellegrino J, Vernerey FJ (2014) Particle-based moving interface method for the study of the interaction between soft colloid particles and immersed fibrous network. Comput Model Eng Sci 98(1):101–127MathSciNetMATHGoogle Scholar
  28. 28.
    Foucard LC, Vernerey FJ (2015) An X-FEM-based numerical-asymptotic expansion for simulating a stokes flow near a sharp corner. Int J Numer Methods Eng 102(2):79–98MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Fourche G (1995) An overview of the basic aspects of polymer adhesion. Part i: fundamentals. Polym Eng Sci 35(12):957–967CrossRefGoogle Scholar
  30. 30.
    Gent AN, Lindley PB (1959) Internal rupture of bonded rubber cylinders in tension. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences, vol 249. The Royal Society, pp 195–205Google Scholar
  31. 31.
    Grillet AM, Wyatt NB, Gloe LM (2012) Polymer gel rheology and adhesion. In: Rheology. InTechGoogle Scholar
  32. 32.
    Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22(47):5424–5430CrossRefGoogle Scholar
  33. 33.
    Harlen OG, Rallison JM, Szabo P (1995) A split Lagrangian–Eulerian method for simulating transient viscoelastic flows. J Non-Newton Fluid Mech 60(1):81–104CrossRefGoogle Scholar
  34. 34.
    Holzapfel GA (2002) Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica 37(4):489–490CrossRefGoogle Scholar
  35. 35.
    Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403CrossRefGoogle Scholar
  36. 36.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Kalcioglu ZI, Mahmoodian R, Hu Y, Suo Z, Van Vliet KJ (2012) From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8(12):3393–3398CrossRefGoogle Scholar
  38. 38.
    Kloxin CJ, Bowman CN (2013) Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem Soc Rev 42(17):7161–7173CrossRefGoogle Scholar
  39. 39.
    Le Tallec P, Rahier C, Kaiss A (1993) Three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109(3–4):233–258MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Leung S, Lowengrub J, Zhao H (2011) A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J Comput Phys 230(7):2540–2561MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Leung S, Zhao H (2009) A grid based particle method for moving interface problems. J Comput Phys 228(8):2993–3024MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Lin DC, Yurke B, Langrana NA (2004) Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J Biomech Eng 126(1):104–110CrossRefGoogle Scholar
  43. 43.
    Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley, HobokenGoogle Scholar
  44. 44.
    Liu X, Fernandes R, Jurisicova A, Casper RF, Sun Y (2010) In situ mechanical characterization of mouse oocytes using a cell holding device. Lab Chip 10(16):2154–2161CrossRefGoogle Scholar
  45. 45.
    Liu X, Shi J, Zong Z, Wan K-T, Sun Y (2012) Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation. Ann Biomed Eng 40(10):2122–2130CrossRefGoogle Scholar
  46. 46.
    Long R, Hui C-Y (2010) Effects of triaxiality on the growth of crack-like cavities in soft incompressible elastic solids. Soft Matter 6(6):1238–1245CrossRefGoogle Scholar
  47. 47.
    Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99CrossRefGoogle Scholar
  48. 48.
    Maeda T, Otsuka H, Takahara A (2009) Dynamic covalent polymers: reorganizable polymers with dynamic covalent bonds. Prog Polym Sci 34(7):581–604CrossRefGoogle Scholar
  49. 49.
    Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials. Part i: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11):2617–2660MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Miehe C, Göktepe S (2005) A micro-macro approach to rubber-like materials. Part ii: the micro-sphere model of finite rubber viscoelasticity. J Mech Phys Solids 53(10):2231–2258MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Moës N, Béchet E, Tourbier M (2006) Imposing dirichlet boundary conditions in the extended finite element method. Int J Numer Methods Eng 67(12):1641–1669MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833CrossRefGoogle Scholar
  53. 53.
    Nanthakumar SS, Lahmer T, Zhuang X, Park HS, Rabczuk T (2016) Topology optimization of piezoelectric nanostructures. J Mech Phys Solids 94:316–335MathSciNetCrossRefGoogle Scholar
  54. 54.
    Plohr BJ, Sharp DH (1988) A conservative Eulerian formulation of the equations for elastic flow. Adv Appl Math 9(4):481–499MathSciNetCrossRefMATHGoogle Scholar
  55. 55.
    Quadrini F, Squeo EA, Guglielmotti A (2010) Indentation creep of polymers. i. Experimental. Polym Eng Sci 50(12):2431–2439CrossRefGoogle Scholar
  56. 56.
    Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84(2–3):217–232CrossRefMATHGoogle Scholar
  57. 57.
    Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26–27):3455–3482CrossRefMATHGoogle Scholar
  58. 58.
    Shaw MT, MacKnight WJ (2005) Introduction to polymer viscoelasticity. Wiley, HobokenCrossRefGoogle Scholar
  59. 59.
    Shen T, Vernerey F (2017) Phoretic motion of soft vesicles and droplets: an XFEM/particle-based numerical solution. Comput Mech 60(1):143–161MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173CrossRefMATHGoogle Scholar
  61. 61.
    Sridhar SL, Schneider MC, Chu S, de Roucy G, Bryant SJ, Vernerey FJ (2017) Heterogeneity is key to hydrogel-based cartilage tissue regeneration. Soft Matter 13(28):4841–4855CrossRefGoogle Scholar
  62. 62.
    Stolarska M, Chopp DL, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943–960CrossRefMATHGoogle Scholar
  63. 63.
    Style RW, Boltyanskiy R, Allen B, Jensen KE, Foote HP, Wettlaufer JS, Dufresne ER (2014) Stiffening solids with liquid inclusions. arXiv preprint arXiv:1407.6424
  64. 64.
    Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190(46):6183–6200MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Takashi N, Hughes TJR (1992) An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body. Comput Methods Appl Mech Eng 95(1):115–138CrossRefMATHGoogle Scholar
  66. 66.
    Tanaka F, Edwards SF (1992) Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules 25(5):1516–1523CrossRefGoogle Scholar
  67. 67.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces the deforming-spatial-domain/space–time procedure: ii. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Treloar LRG (1943) The elasticity of a network of long-chain molecules ii. Trans Faraday Soc 39:241–246CrossRefGoogle Scholar
  69. 69.
    Tvergaard V, Needleman A (2011) Polymer indentation: numerical analysis and comparison with a spherical cavity model. J Mech Phys Solids 59(9):1669–1684CrossRefMATHGoogle Scholar
  70. 70.
    Vernerey FJ (2018) Transient response of nonlinear polymer networks: a kinetic theory. J Mech Phys Solids 115:230–247MathSciNetCrossRefGoogle Scholar
  71. 71.
    Vernerey FJ, Akalp U (2016) Role of catch bonds in actomyosin mechanics and cell mechanosensitivity. Phys Rev E 94(1):012403CrossRefGoogle Scholar
  72. 72.
    Vernerey FJ, Farsad M (2011) A constrained mixture approach to mechano-sensing and force generation in contractile cells. J Mech Behav Biomed Mater 4(8):1683–1699CrossRefGoogle Scholar
  73. 73.
    Vernerey FJ, Kabiri M (2012) An adaptive concurrent multiscale method for microstructured elastic solids. Comput Methods Appl Mech Eng 241:52–64MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Vernerey FJ, Long R, Brighenti R (2017) A statistically-based continuum theory for polymers with transient networks. J Mech Phys Solids 107:1–20MathSciNetCrossRefGoogle Scholar
  75. 75.
    Vitali E, Benson DJ (2006) An extended finite element formulation for contact in multi-material arbitrary Lagrangian–Eulerian calculations. Int J Numeric Methods Eng 67(10):1420–1444Google Scholar
  76. 76.
    Vu-Bac N, Bessa MA, Rabczuk T, Liu WK (2015) A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules 48(18):6713–6723CrossRefGoogle Scholar
  77. 77.
    Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10(1):14CrossRefGoogle Scholar
  78. 78.
    Yamamoto M (1956) The visco-elastic properties of network structure i. General formalism. J Phys Soc Jpn 11(4):413–421MathSciNetCrossRefGoogle Scholar
  79. 79.
    Zhu J, Li T, Cai S, Suo Z (2011) Snap-through expansion of a gas bubble in an elastomer. J Adhes 87(5):466–481CrossRefGoogle Scholar
  80. 80.
    Zienkiewicz OC, Taylor RL, Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 3. McGraw-Hill, LondonMATHGoogle Scholar
  81. 81.
    Zimberlin JA, McManus JJ, Crosby AJ (2010) Cavitation rheology of the vitreous: mechanical properties of biological tissue. Soft Matter 6(15):3632–3635CrossRefGoogle Scholar
  82. 82.
    Zimberlin JA, Sanabria-DeLong N, Tew GN, Crosby AJ (2007) Cavitation rheology for soft materials. Soft Matter 3(6):763–767CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of Colorado BoulderBoulderUSA

Personalised recommendations