A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures
- 240 Downloads
Abstract
In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.
Keywords
Direct method Shakedown analysis Stress compensation method Large-scale Elastoplastic structuresNotes
Acknowledgements
The authors would like to thank the support of the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 11325211), the National Natural Science Foundation of China (Grant No. 11672147) and the Project of International Cooperation and Exchange NSFC (Grant No. 11511130057) during the course of this work.
References
- 1.König JA, Maier G (1981) Shakedown analysis of elastoplastic structures: a review of recent developments. Nucl Eng Des 66(1):81–95Google Scholar
- 2.Maier G (2001) On some issues in shakedown analysis. J Appl Mech-T ASME 68(5):799–807. https://doi.org/10.1115/1.1379368 zbMATHGoogle Scholar
- 3.Melan E (1938) Ingenieur-Archiv. Zur Plastizität des räumlichen Kontinuums 9(2):116–126Google Scholar
- 4.Koiter WT (1960) General theorems for elastic-plastic solids. In: Sneddon JN, Hill R (eds) Progress in solid mechanics, vol 1. North-Holland, Amsterdam, pp 167–221Google Scholar
- 5.König JA (1987) Shakedown of elastic-plastic structures. Elsevier, AmsterdamGoogle Scholar
- 6.Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solids 71:112–131. https://doi.org/10.1016/j.jmps.2014.06.008 MathSciNetzbMATHGoogle Scholar
- 7.Zarka J, Casier J (1979) Cyclic loading on an elastoplastic structure. In: Nemet-Nasser S (ed) Practical rule, mechanics today, vol 6. Pergamon Press, OxfordGoogle Scholar
- 8.Zarka J (1980) Direct analysis of elastic-plastic structures with ‘overlay’ materials during cyclic loading. Int J Numer Meth Eng 15(2):225–235. https://doi.org/10.1002/nme.1620150206 zbMATHGoogle Scholar
- 9.Stein E, Zhang GB, Konig JA (1992) Shakedown with nonlinear strain-hardening including structural computation using finite-element method. Int J Plast 8(1):1–31zbMATHGoogle Scholar
- 10.Pycko S, Maier G (1995) Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models. Int J Plast 11(4):367–395. https://doi.org/10.1016/S0749-6419(95)00004-6 zbMATHGoogle Scholar
- 11.Chinh PD (2007) Shakedown theory for elastic plastic kinematic hardening bodies. Int J Plast 23(7):1240–1259. https://doi.org/10.1016/j.ijplas.2006.11.003 zbMATHGoogle Scholar
- 12.Polizzotto C (2010) Shakedown analysis for a class of strengthening materials within the framework of gradient plasticity. Int J Plast 26(7):1050–1069. https://doi.org/10.1016/j.ijplas.2010.01.006 zbMATHGoogle Scholar
- 13.Weichert D (1986) On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures. Int J Plast 2(2):135–148. https://doi.org/10.1016/0749-6419(86)90009-4 zbMATHGoogle Scholar
- 14.Gross-Weege J (1990) A unified formulation of statical shakedown criteria for geometrically nonlinear problems. Int J Plast 6(4):433–447. https://doi.org/10.1016/0749-6419(90)90012-4 Google Scholar
- 15.Corradi L, Maier G (1974) Dynamic non-shakedown theorem for elastic perfectly-plastic continua. J Mech Phys Solids 22(5):401–413. https://doi.org/10.1016/0022-5096(74)90005-2 zbMATHGoogle Scholar
- 16.Borino G, Polizzotto C (1996) Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations. Int J Plast 12(2):215–228. https://doi.org/10.1016/S0749-6419(96)00004-6 zbMATHGoogle Scholar
- 17.Chen HF, Ponter ARS (2004) A simplified creep-reverse plasticity solution method for bodies subjected to cyclic loading. Eur J Mech a-Solid 23(4):561–577. https://doi.org/10.1016/j.euromechsol.2004.04.003 zbMATHGoogle Scholar
- 18.Klebanov JM, Boyle JT (1998) Shakedown of creeping structures. Int J Solids Struct 35(23):3121–3133. https://doi.org/10.1016/S0020-7683(97)00359-4 zbMATHGoogle Scholar
- 19.Ponter ARS (2016) Shakedown limit theorems for frictional contact on a linear elastic body. Eur J Mech A/Solids 60:17–27. https://doi.org/10.1016/j.euromechsol.2016.05.003 MathSciNetzbMATHGoogle Scholar
- 20.Borkowski A, Kleiber M (1980) On a numerical approach to shakedown analysis of structures. Comput Methods Appl Mech Eng 22(1):101–119. https://doi.org/10.1016/0045-7825(80)90053-5 zbMATHGoogle Scholar
- 21.Zhang Y (1995) An iteration algorithm for kinematic shakedown analysis. Comput Methods Appl Mech Eng 127(1–4):217–226. https://doi.org/10.1016/0045-7825(95)00121-6 zbMATHGoogle Scholar
- 22.Ponter ARS, Carter KF (1997) Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus. Comput Methods Appl Mech Eng 140(3–4):237–258. https://doi.org/10.1016/S0045-7825(96)01104-8 zbMATHGoogle Scholar
- 23.Ponter ARS, Carter KF (1997) Shakedown state simulation techniques based on linear elastic solutions. Comput Methods Appl Mech Eng 140(3–4):259–279. https://doi.org/10.1016/S0045-7825(96)01105-X MathSciNetzbMATHGoogle Scholar
- 24.Chen HF, Ponter ARS (2001) Shakedown and limit analyses for 3-D structures using the linear matching method. Int J Press Vessels Piping 78(6):443–451. https://doi.org/10.1016/S0308-0161(01)00052-7 Google Scholar
- 25.Casciaro R, Garcea G (2002) An iterative method for shakedown analysis. Comput Methods Appl Mech Eng 191(49–50):5761–5792. https://doi.org/10.1016/S0045-7825(02)00496-6 zbMATHGoogle Scholar
- 26.Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Methods Eng 63(8):1174–1202. https://doi.org/10.1002/nme.1316 zbMATHGoogle Scholar
- 27.Spiliopoulos KV, Panagiotou KD (2012) A direct method to predict cyclic steady states of elastoplastic structures. Comput Methods Appl Mech Eng 223:186–198. https://doi.org/10.1016/j.cma.2012.03.004 MathSciNetzbMATHGoogle Scholar
- 28.Spiliopoulos KV, Panagiotou KD (2014) A residual stress decomposition based method for the shakedown analysis of structures. Comput Methods Appl Mech Eng 276:410–430. https://doi.org/10.1016/j.cma.2014.03.019 zbMATHGoogle Scholar
- 29.Vu DK, Yan AM, Nguyen-Dang H (2004) A primal-dual algorithm for shakedown analysis of structures. Comput Methods Appl Mech Eng 193(42–44):4663–4674. https://doi.org/10.1016/j.cma.2004.03.011 zbMATHGoogle Scholar
- 30.Simon JW, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200(41–44):2828–2839. https://doi.org/10.1016/j.cma.2011.05.006 MathSciNetzbMATHGoogle Scholar
- 31.Zouain N, Borges L, Silveira JL (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191(23–24):2463–2481. https://doi.org/10.1016/S0045-7825(01)00374-7 MathSciNetzbMATHGoogle Scholar
- 32.Christiansen E, Andersen KD (1999) Computation of collapse states with von Mises type yield condition. Int J Numer Methods Eng 46(8):1185–1202MathSciNetzbMATHGoogle Scholar
- 33.Makrodimopoulos A, Martin CM (2006) Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J Numer Methods Eng 66(4):604–634. https://doi.org/10.1002/nme.1567 zbMATHGoogle Scholar
- 34.Krabbenhoft K, Lyamin AV, Sloan SW (2007) Shakedown of a cohesive-frictional half-space subjected to rolling and sliding contact. Int J Solids Struct 44(11–12):3998–4008. https://doi.org/10.1016/j.ijsolstr.2006.11.001 zbMATHGoogle Scholar
- 35.Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75(4):414–439. https://doi.org/10.1002/nme.2256 zbMATHGoogle Scholar
- 36.Garcea G, Leonetti L (2011) A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. Int J Numer Methods Eng 88(11):1085–1111. https://doi.org/10.1002/nme.3188 MathSciNetzbMATHGoogle Scholar
- 37.Simon JW, Weichert D (2012) Shakedown analysis with multidimensional loading spaces. Comput Mech 49(4):477–485. https://doi.org/10.1007/s00466-011-0656-8 MathSciNetzbMATHGoogle Scholar
- 38.Liu YH, Zhang XF, Cen ZZ (2005) Lower bound shakedown analysis by the symmetric Galerkin boundary element method. Int J Plast 21(1):21–42. https://doi.org/10.1016/j.ijplas.2004.01.003 zbMATHGoogle Scholar
- 39.Ribeiro TSA, Beer G, Duenser C (2008) Efficient elastoplastic analysis with the boundary element method. Comput Mech 41(5):715–732. https://doi.org/10.1007/s00466-007-0227-1 zbMATHGoogle Scholar
- 40.Le CV, Nguyen-Xuan H, Askes H, Bordas SPA, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83(12):1651–1674. https://doi.org/10.1002/nme.2897 MathSciNetzbMATHGoogle Scholar
- 41.Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82(7):917–938. https://doi.org/10.1002/nme.2804 MathSciNetzbMATHGoogle Scholar
- 42.Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N (2012) Computation of limit and shakedown loads using a node-based smoothed finite element method. Int J Numer Methods Eng 90(3):287–310. https://doi.org/10.1002/nme.3317 MathSciNetzbMATHGoogle Scholar
- 43.Nguyen-Xuan H, Liu GR (2015) An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis. Comput Methods Appl Mech Eng 285:877–905. https://doi.org/10.1016/j.cma.2014.12.014 MathSciNetzbMATHGoogle Scholar
- 44.Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197(45–48):3911–3921. https://doi.org/10.1016/j.cma.2008.03.009 zbMATHGoogle Scholar
- 45.Yu S, Zhang X, Sloan SW (2016) A 3D upper bound limit analysis using radial point interpolation meshless method and second-order cone programming. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5273 MathSciNetGoogle Scholar
- 46.Zhou S, Liu Y, Wang D, Wang K, Yu S (2014) Upper bound shakedown analysis with the nodal natural element method. Comput Mech 54(5):1111–1128. https://doi.org/10.1007/s00466-014-1043-z MathSciNetzbMATHGoogle Scholar
- 47.Zhou S, Liu Y, Chen S (2012) Upper bound limit analysis of plates utilizing the C1 natural element method. Comput Mech 50(5):543–561. https://doi.org/10.1007/s00466-012-0688-8 MathSciNetzbMATHGoogle Scholar
- 48.Do HV, Nguyen-Xuan H (2017) Limit and shakedown isogeometric analysis of structures based on Bézier extraction. Eur J Mech A/Solids 63:149–164. https://doi.org/10.1016/j.euromechsol.2017.01.004 MathSciNetzbMATHGoogle Scholar
- 49.Heitzer M, Pop G, Staat M (2000) Basis reduction for the shakedown problem for bounded kinematic hardening material. J Global Optim 17(1–4):185–200MathSciNetzbMATHGoogle Scholar
- 50.Seshadri R (1995) Inelastic evaluation of mechanical and structural components using the generalized local stress strain method of analysis. Nucl Eng Des 153(2–3):287–303. https://doi.org/10.1016/0029-5493(95)90020-9 Google Scholar
- 51.Seshadri R, Mangalaramanan SP (1997) Lower bound limit loads using variational concepts: the m(alpha)-method. Int J Press Vessels Pip 71(2):93–106Google Scholar
- 52.Mackenzie D, Shi J, Boyle JT (1994) Finite-element modeling for limit analysis by the elastic compensation method. Comput Struct 51(4):403–410zbMATHGoogle Scholar
- 53.Ponter ARS, Engelhardt M (2000) Shakedown limits for a general yield condition: implementation and application for a Von Mises yield condition. Eur J Mech a-Solid 19(3):423–445. https://doi.org/10.1016/S0997-7538(00)00171-6 zbMATHGoogle Scholar
- 54.Boulbibane M, Ponter ARS (2005) Extension of the linear matching method to geotechnical problems. Comput Methods Appl Mech Eng 194(45–47):4633–4650. https://doi.org/10.1016/j.cma.2004.11.009 zbMATHGoogle Scholar
- 55.Chen HF, Ponter ARS (2001) A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading. Eur J Mech a-Solid 20(4):555–571. https://doi.org/10.1016/S0997-7538(01)01162-7 MathSciNetzbMATHGoogle Scholar
- 56.Chen HF (2010) Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. J Press Vess-T ASME 132(1):273–281. https://doi.org/10.1115/1.4000369 Google Scholar
- 57.Lytwyn M, Chen HF, Ponter ARS (2015) A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories. Int J Numer Methods Eng 104(2):104–124. https://doi.org/10.1002/nme.4924 MathSciNetzbMATHGoogle Scholar
- 58.Barbera D, Chen H, Liu Y, Xuan F (2017) Recent developments of the linear matching method framework for structural integrity assessment. J Press Vessel Technol 139(5):051101–051109. https://doi.org/10.1115/1.4036919 Google Scholar
- 59.Gokhfeld DA, Charniavsky OF (1980) Limit analysis of structures at thermal cycling, vol 4. Sijthoff & Noordhoff edn, Alphen aan den Rijn, The NetherlandsGoogle Scholar
- 60.Leonetti L, Casciaro R, Garcea G (2015) Effective treatment of complex statical and dynamical load combinations within shakedown analysis of 3D frames. Comput Struct 158:124–139. https://doi.org/10.1016/j.compstruc.2015.06.002 Google Scholar
- 61.Frederick C, Armstrong P (1966) Convergent internal stresses and steady cyclic states of stress. J Strain Anal Eng Des 1(2):154–159Google Scholar
- 62.Polizzotto C (2003) Variational methods for the steady state response of elastic-plastic solids subjected to cyclic loads. Int J Solids Struct 40(11):2673–2697. https://doi.org/10.1016/S0020-7683(03)00093-3 MathSciNetzbMATHGoogle Scholar
- 63.ABAQUS (Dassault Systems, Version 6.14, 2014)Google Scholar
- 64.Carvelli V, Cen ZZ, Liu Y, Maier G (1999) Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech 69(9–10):751–764zbMATHGoogle Scholar
- 65.Zhang T, Raad L (2002) An eigen-mode method in kinematic shakedown analysis. Int J Plast 18(1):71–90. https://doi.org/10.1016/S0749-6419(00)00055-3 zbMATHGoogle Scholar
- 66.Francois A, Abdelkader H, An LTH, Said M, Tao PD (2007) Application of lower bound direct method to engineering structures. J Global Optim 37(4):609–630MathSciNetzbMATHGoogle Scholar
- 67.Belytsch T (1972) Plane stress shakedown analysis by finite elements. Int J Mech Sci 14(9):619–625Google Scholar
- 68.Zhang G (1992) Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw. kinematisch verfestigendem Material. Ph.D. thesis, University Hanover, GermanyGoogle Scholar
- 69.Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int J Mech Sci 39(4):417–433. https://doi.org/10.1016/S0020-7403(96)00039-2 zbMATHGoogle Scholar
- 70.Krabbenhoft K, Lyamin AV, Sloan SW (2007) Bounds to shakedown loads for a class of deviatoric plasticity models. Comput Mech 39(6):879–888. https://doi.org/10.1007/s00466-006-0076-3 MathSciNetzbMATHGoogle Scholar