Advertisement

Computational Mechanics

, Volume 63, Issue 1, pp 1–22 | Cite as

A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

  • Heng Peng
  • Yinghua LiuEmail author
  • Haofeng Chen
Original Paper
  • 240 Downloads

Abstract

In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

Keywords

Direct method Shakedown analysis Stress compensation method Large-scale Elastoplastic structures 

Notes

Acknowledgements

The authors would like to thank the support of the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 11325211), the National Natural Science Foundation of China (Grant No. 11672147) and the Project of International Cooperation and Exchange NSFC (Grant No. 11511130057) during the course of this work.

References

  1. 1.
    König JA, Maier G (1981) Shakedown analysis of elastoplastic structures: a review of recent developments. Nucl Eng Des 66(1):81–95Google Scholar
  2. 2.
    Maier G (2001) On some issues in shakedown analysis. J Appl Mech-T ASME 68(5):799–807.  https://doi.org/10.1115/1.1379368 zbMATHGoogle Scholar
  3. 3.
    Melan E (1938) Ingenieur-Archiv. Zur Plastizität des räumlichen Kontinuums 9(2):116–126Google Scholar
  4. 4.
    Koiter WT (1960) General theorems for elastic-plastic solids. In: Sneddon JN, Hill R (eds) Progress in solid mechanics, vol 1. North-Holland, Amsterdam, pp 167–221Google Scholar
  5. 5.
    König JA (1987) Shakedown of elastic-plastic structures. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Peigney M (2014) Shakedown of elastic-perfectly plastic materials with temperature-dependent elastic moduli. J Mech Phys Solids 71:112–131.  https://doi.org/10.1016/j.jmps.2014.06.008 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zarka J, Casier J (1979) Cyclic loading on an elastoplastic structure. In: Nemet-Nasser S (ed) Practical rule, mechanics today, vol 6. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Zarka J (1980) Direct analysis of elastic-plastic structures with ‘overlay’ materials during cyclic loading. Int J Numer Meth Eng 15(2):225–235.  https://doi.org/10.1002/nme.1620150206 zbMATHGoogle Scholar
  9. 9.
    Stein E, Zhang GB, Konig JA (1992) Shakedown with nonlinear strain-hardening including structural computation using finite-element method. Int J Plast 8(1):1–31zbMATHGoogle Scholar
  10. 10.
    Pycko S, Maier G (1995) Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models. Int J Plast 11(4):367–395.  https://doi.org/10.1016/S0749-6419(95)00004-6 zbMATHGoogle Scholar
  11. 11.
    Chinh PD (2007) Shakedown theory for elastic plastic kinematic hardening bodies. Int J Plast 23(7):1240–1259.  https://doi.org/10.1016/j.ijplas.2006.11.003 zbMATHGoogle Scholar
  12. 12.
    Polizzotto C (2010) Shakedown analysis for a class of strengthening materials within the framework of gradient plasticity. Int J Plast 26(7):1050–1069.  https://doi.org/10.1016/j.ijplas.2010.01.006 zbMATHGoogle Scholar
  13. 13.
    Weichert D (1986) On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures. Int J Plast 2(2):135–148.  https://doi.org/10.1016/0749-6419(86)90009-4 zbMATHGoogle Scholar
  14. 14.
    Gross-Weege J (1990) A unified formulation of statical shakedown criteria for geometrically nonlinear problems. Int J Plast 6(4):433–447.  https://doi.org/10.1016/0749-6419(90)90012-4 Google Scholar
  15. 15.
    Corradi L, Maier G (1974) Dynamic non-shakedown theorem for elastic perfectly-plastic continua. J Mech Phys Solids 22(5):401–413.  https://doi.org/10.1016/0022-5096(74)90005-2 zbMATHGoogle Scholar
  16. 16.
    Borino G, Polizzotto C (1996) Dynamic shakedown of structures with variable appended masses and subjected to repeated excitations. Int J Plast 12(2):215–228.  https://doi.org/10.1016/S0749-6419(96)00004-6 zbMATHGoogle Scholar
  17. 17.
    Chen HF, Ponter ARS (2004) A simplified creep-reverse plasticity solution method for bodies subjected to cyclic loading. Eur J Mech a-Solid 23(4):561–577.  https://doi.org/10.1016/j.euromechsol.2004.04.003 zbMATHGoogle Scholar
  18. 18.
    Klebanov JM, Boyle JT (1998) Shakedown of creeping structures. Int J Solids Struct 35(23):3121–3133.  https://doi.org/10.1016/S0020-7683(97)00359-4 zbMATHGoogle Scholar
  19. 19.
    Ponter ARS (2016) Shakedown limit theorems for frictional contact on a linear elastic body. Eur J Mech A/Solids 60:17–27.  https://doi.org/10.1016/j.euromechsol.2016.05.003 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Borkowski A, Kleiber M (1980) On a numerical approach to shakedown analysis of structures. Comput Methods Appl Mech Eng 22(1):101–119.  https://doi.org/10.1016/0045-7825(80)90053-5 zbMATHGoogle Scholar
  21. 21.
    Zhang Y (1995) An iteration algorithm for kinematic shakedown analysis. Comput Methods Appl Mech Eng 127(1–4):217–226.  https://doi.org/10.1016/0045-7825(95)00121-6 zbMATHGoogle Scholar
  22. 22.
    Ponter ARS, Carter KF (1997) Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus. Comput Methods Appl Mech Eng 140(3–4):237–258.  https://doi.org/10.1016/S0045-7825(96)01104-8 zbMATHGoogle Scholar
  23. 23.
    Ponter ARS, Carter KF (1997) Shakedown state simulation techniques based on linear elastic solutions. Comput Methods Appl Mech Eng 140(3–4):259–279.  https://doi.org/10.1016/S0045-7825(96)01105-X MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chen HF, Ponter ARS (2001) Shakedown and limit analyses for 3-D structures using the linear matching method. Int J Press Vessels Piping 78(6):443–451.  https://doi.org/10.1016/S0308-0161(01)00052-7 Google Scholar
  25. 25.
    Casciaro R, Garcea G (2002) An iterative method for shakedown analysis. Comput Methods Appl Mech Eng 191(49–50):5761–5792.  https://doi.org/10.1016/S0045-7825(02)00496-6 zbMATHGoogle Scholar
  26. 26.
    Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Methods Eng 63(8):1174–1202.  https://doi.org/10.1002/nme.1316 zbMATHGoogle Scholar
  27. 27.
    Spiliopoulos KV, Panagiotou KD (2012) A direct method to predict cyclic steady states of elastoplastic structures. Comput Methods Appl Mech Eng 223:186–198.  https://doi.org/10.1016/j.cma.2012.03.004 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Spiliopoulos KV, Panagiotou KD (2014) A residual stress decomposition based method for the shakedown analysis of structures. Comput Methods Appl Mech Eng 276:410–430.  https://doi.org/10.1016/j.cma.2014.03.019 zbMATHGoogle Scholar
  29. 29.
    Vu DK, Yan AM, Nguyen-Dang H (2004) A primal-dual algorithm for shakedown analysis of structures. Comput Methods Appl Mech Eng 193(42–44):4663–4674.  https://doi.org/10.1016/j.cma.2004.03.011 zbMATHGoogle Scholar
  30. 30.
    Simon JW, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200(41–44):2828–2839.  https://doi.org/10.1016/j.cma.2011.05.006 MathSciNetzbMATHGoogle Scholar
  31. 31.
    Zouain N, Borges L, Silveira JL (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191(23–24):2463–2481.  https://doi.org/10.1016/S0045-7825(01)00374-7 MathSciNetzbMATHGoogle Scholar
  32. 32.
    Christiansen E, Andersen KD (1999) Computation of collapse states with von Mises type yield condition. Int J Numer Methods Eng 46(8):1185–1202MathSciNetzbMATHGoogle Scholar
  33. 33.
    Makrodimopoulos A, Martin CM (2006) Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J Numer Methods Eng 66(4):604–634.  https://doi.org/10.1002/nme.1567 zbMATHGoogle Scholar
  34. 34.
    Krabbenhoft K, Lyamin AV, Sloan SW (2007) Shakedown of a cohesive-frictional half-space subjected to rolling and sliding contact. Int J Solids Struct 44(11–12):3998–4008.  https://doi.org/10.1016/j.ijsolstr.2006.11.001 zbMATHGoogle Scholar
  35. 35.
    Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75(4):414–439.  https://doi.org/10.1002/nme.2256 zbMATHGoogle Scholar
  36. 36.
    Garcea G, Leonetti L (2011) A unified mathematical programming formulation of strain driven and interior point algorithms for shakedown and limit analysis. Int J Numer Methods Eng 88(11):1085–1111.  https://doi.org/10.1002/nme.3188 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Simon JW, Weichert D (2012) Shakedown analysis with multidimensional loading spaces. Comput Mech 49(4):477–485.  https://doi.org/10.1007/s00466-011-0656-8 MathSciNetzbMATHGoogle Scholar
  38. 38.
    Liu YH, Zhang XF, Cen ZZ (2005) Lower bound shakedown analysis by the symmetric Galerkin boundary element method. Int J Plast 21(1):21–42.  https://doi.org/10.1016/j.ijplas.2004.01.003 zbMATHGoogle Scholar
  39. 39.
    Ribeiro TSA, Beer G, Duenser C (2008) Efficient elastoplastic analysis with the boundary element method. Comput Mech 41(5):715–732.  https://doi.org/10.1007/s00466-007-0227-1 zbMATHGoogle Scholar
  40. 40.
    Le CV, Nguyen-Xuan H, Askes H, Bordas SPA, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83(12):1651–1674.  https://doi.org/10.1002/nme.2897 MathSciNetzbMATHGoogle Scholar
  41. 41.
    Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82(7):917–938.  https://doi.org/10.1002/nme.2804 MathSciNetzbMATHGoogle Scholar
  42. 42.
    Nguyen-Xuan H, Rabczuk T, Nguyen-Thoi T, Tran TN, Nguyen-Thanh N (2012) Computation of limit and shakedown loads using a node-based smoothed finite element method. Int J Numer Methods Eng 90(3):287–310.  https://doi.org/10.1002/nme.3317 MathSciNetzbMATHGoogle Scholar
  43. 43.
    Nguyen-Xuan H, Liu GR (2015) An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis. Comput Methods Appl Mech Eng 285:877–905.  https://doi.org/10.1016/j.cma.2014.12.014 MathSciNetzbMATHGoogle Scholar
  44. 44.
    Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197(45–48):3911–3921.  https://doi.org/10.1016/j.cma.2008.03.009 zbMATHGoogle Scholar
  45. 45.
    Yu S, Zhang X, Sloan SW (2016) A 3D upper bound limit analysis using radial point interpolation meshless method and second-order cone programming. Int J Numer Methods Eng.  https://doi.org/10.1002/nme.5273 MathSciNetGoogle Scholar
  46. 46.
    Zhou S, Liu Y, Wang D, Wang K, Yu S (2014) Upper bound shakedown analysis with the nodal natural element method. Comput Mech 54(5):1111–1128.  https://doi.org/10.1007/s00466-014-1043-z MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zhou S, Liu Y, Chen S (2012) Upper bound limit analysis of plates utilizing the C1 natural element method. Comput Mech 50(5):543–561.  https://doi.org/10.1007/s00466-012-0688-8 MathSciNetzbMATHGoogle Scholar
  48. 48.
    Do HV, Nguyen-Xuan H (2017) Limit and shakedown isogeometric analysis of structures based on Bézier extraction. Eur J Mech A/Solids 63:149–164.  https://doi.org/10.1016/j.euromechsol.2017.01.004 MathSciNetzbMATHGoogle Scholar
  49. 49.
    Heitzer M, Pop G, Staat M (2000) Basis reduction for the shakedown problem for bounded kinematic hardening material. J Global Optim 17(1–4):185–200MathSciNetzbMATHGoogle Scholar
  50. 50.
    Seshadri R (1995) Inelastic evaluation of mechanical and structural components using the generalized local stress strain method of analysis. Nucl Eng Des 153(2–3):287–303.  https://doi.org/10.1016/0029-5493(95)90020-9 Google Scholar
  51. 51.
    Seshadri R, Mangalaramanan SP (1997) Lower bound limit loads using variational concepts: the m(alpha)-method. Int J Press Vessels Pip 71(2):93–106Google Scholar
  52. 52.
    Mackenzie D, Shi J, Boyle JT (1994) Finite-element modeling for limit analysis by the elastic compensation method. Comput Struct 51(4):403–410zbMATHGoogle Scholar
  53. 53.
    Ponter ARS, Engelhardt M (2000) Shakedown limits for a general yield condition: implementation and application for a Von Mises yield condition. Eur J Mech a-Solid 19(3):423–445.  https://doi.org/10.1016/S0997-7538(00)00171-6 zbMATHGoogle Scholar
  54. 54.
    Boulbibane M, Ponter ARS (2005) Extension of the linear matching method to geotechnical problems. Comput Methods Appl Mech Eng 194(45–47):4633–4650.  https://doi.org/10.1016/j.cma.2004.11.009 zbMATHGoogle Scholar
  55. 55.
    Chen HF, Ponter ARS (2001) A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading. Eur J Mech a-Solid 20(4):555–571.  https://doi.org/10.1016/S0997-7538(01)01162-7 MathSciNetzbMATHGoogle Scholar
  56. 56.
    Chen HF (2010) Lower and upper bound shakedown analysis of structures with temperature-dependent yield stress. J Press Vess-T ASME 132(1):273–281.  https://doi.org/10.1115/1.4000369 Google Scholar
  57. 57.
    Lytwyn M, Chen HF, Ponter ARS (2015) A generalised method for ratchet analysis of structures undergoing arbitrary thermo-mechanical load histories. Int J Numer Methods Eng 104(2):104–124.  https://doi.org/10.1002/nme.4924 MathSciNetzbMATHGoogle Scholar
  58. 58.
    Barbera D, Chen H, Liu Y, Xuan F (2017) Recent developments of the linear matching method framework for structural integrity assessment. J Press Vessel Technol 139(5):051101–051109.  https://doi.org/10.1115/1.4036919 Google Scholar
  59. 59.
    Gokhfeld DA, Charniavsky OF (1980) Limit analysis of structures at thermal cycling, vol 4. Sijthoff & Noordhoff edn, Alphen aan den Rijn, The NetherlandsGoogle Scholar
  60. 60.
    Leonetti L, Casciaro R, Garcea G (2015) Effective treatment of complex statical and dynamical load combinations within shakedown analysis of 3D frames. Comput Struct 158:124–139.  https://doi.org/10.1016/j.compstruc.2015.06.002 Google Scholar
  61. 61.
    Frederick C, Armstrong P (1966) Convergent internal stresses and steady cyclic states of stress. J Strain Anal Eng Des 1(2):154–159Google Scholar
  62. 62.
    Polizzotto C (2003) Variational methods for the steady state response of elastic-plastic solids subjected to cyclic loads. Int J Solids Struct 40(11):2673–2697.  https://doi.org/10.1016/S0020-7683(03)00093-3 MathSciNetzbMATHGoogle Scholar
  63. 63.
    ABAQUS (Dassault Systems, Version 6.14, 2014)Google Scholar
  64. 64.
    Carvelli V, Cen ZZ, Liu Y, Maier G (1999) Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech 69(9–10):751–764zbMATHGoogle Scholar
  65. 65.
    Zhang T, Raad L (2002) An eigen-mode method in kinematic shakedown analysis. Int J Plast 18(1):71–90.  https://doi.org/10.1016/S0749-6419(00)00055-3 zbMATHGoogle Scholar
  66. 66.
    Francois A, Abdelkader H, An LTH, Said M, Tao PD (2007) Application of lower bound direct method to engineering structures. J Global Optim 37(4):609–630MathSciNetzbMATHGoogle Scholar
  67. 67.
    Belytsch T (1972) Plane stress shakedown analysis by finite elements. Int J Mech Sci 14(9):619–625Google Scholar
  68. 68.
    Zhang G (1992) Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw. kinematisch verfestigendem Material. Ph.D. thesis, University Hanover, GermanyGoogle Scholar
  69. 69.
    Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int J Mech Sci 39(4):417–433.  https://doi.org/10.1016/S0020-7403(96)00039-2 zbMATHGoogle Scholar
  70. 70.
    Krabbenhoft K, Lyamin AV, Sloan SW (2007) Bounds to shakedown loads for a class of deviatoric plasticity models. Comput Mech 39(6):879–888.  https://doi.org/10.1007/s00466-006-0076-3 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering Mechanics, AMLTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations