Advertisement

Computational Mechanics

, Volume 62, Issue 4, pp 783–801 | Cite as

Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

  • Mohammad MalekanEmail author
  • Felício B. Barros
Original Paper

Abstract

Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner–Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

Keywords

Generalized/extended FEM Fracture mechanics Two-scale analysis Micro-defects Stress intensity factor 

Nomenclature

\( \varvec{{\bar{t}}} \)

External traction vector

\( \varvec{{\bar{u}}} \)

Prescribed displacement

\( \varvec{{\hat{n}}} \)

Unit outward normal

\( \varvec{b} \)

Body force vector

\( \varvec{m}_j, n_j \)

Outward unit normal vectors in contour integral

\( \varvec{u} \)

Displacement field vector

\( \varvec{v} \)

Test function

\( \delta \)

Kronecker delta

\( \epsilon _b, \epsilon _s \)

Bending and shear strains

\( \epsilon _{ij} \)

Strain tensor

\( \Gamma \)

Inner J-integral boundary

\( \kappa \)

Material constant

\( \mu \)

Shear modulus

\( \mu _d \)

Inhomogeneities shear modulus

\( \mu _m \)

Main problem shear modulus

\( \nu _d \)

Inhomogeneities Poisson’s ratio

\( \Omega \)

Problem domain

\( \omega _j\)

Cloud of node j

\( \partial \Omega \)

Problem boundary

\( \partial \Omega _c \)

Crack surface

\( \partial \Omega _t \)

Surface traction boundary

\( \partial \Omega _u \)

Displacement boundary

\( \phi _i \)

Angle of micro-defect i and main crack-tip connection line with respect to the x-axis

\( \psi \)

Section rotation of the plate middle plane

\( \sigma \)

Cauchy stress tensor

\( \sigma _{ij} \)

Stress tensor

\( \theta _i \)

Micro-defect i direction angle

\( \varepsilon \)

Linear strain tensor

\( a_{mc} \)

Main crack length

\( C_+, C_- \)

Upper and lower crack surfaces

\( C_0 \)

Outer J-integral boundary

\( d_i \)

Distance of the micro-defect i to the main crack-tip

detJ

Determinant of the Jacobian

\( h_{elem} \)

Square root of the crack-tip element area

I

Interaction integral

J

J-integral

\( l_{md} \)

Characteristic length of the micro-defect

M

Bending moment

\( N_{gp} \)

Number of Gauss points

Q

Shear load

q

Weighting function

\( q_j \)

A set of linearly independent functions defined at each nodal cloud

\( r_m \)

Interaction integral scalar multiplier

W

Strain energy density

w

Transverse displacement of the plate

\( w_{gp} \)

Weight of each Gauss point

\(\varvec{b}_{ji}\)

Nodal parameters associated with G/XFEM

\(\varvec{D}\)

Hook’s tensor

\({\mathbb {R}}^{2}\)

Bi-dimensional domain

\({\mathcal {N}}_j\)

FE Shape function

\(\nu \)

Poisson ratio

\(\Omega _{G}\)

Global domain

\(\Omega _{L}\)

Local domain

\(\phi _{ji}\)

G/XFEM shape function

\(\theta \)

Angle between x coordinate and direction of the crack front

\({\tilde{\varvec{u}}}(\varvec{x})\)

G/XFEM displacement approximation

E

Young’s modulus

\(K_I, K_{II}, K_{III} \)

Mode-I, II and III stress intensity factors

\(L_{ji}\)

Local approximation function

Notes

Acknowledgements

The first author (CNPq Scholarship, Brazil—Grant No. 151003/2017-3) and the other author gratefully acknowledge the important support of the Brazilian research agencies CNPq (National Council for Scientific and Technological Developments—Grant No. 308932/2016-1), CAPES (Coordination for the Improvement of Higher Education Personnel), and FAPEMIG (Foundation for Research Support of the State of Minas Gerais—Grant No. APQ-02460-16).

References

  1. 1.
    Akbari A, Kerfriden P, Rabczuk T, Bordas SP (2012) An adaptive multiscale method for fracture based on concurrent-hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the association for computational mechanics in engineering, ManchesterGoogle Scholar
  2. 2.
    Alves PD, Barros FB, Pitangueira RLS (2013) An object oriented approach to the generalized finite element method. Adv Eng Softw 59:1–18.  https://doi.org/10.1016/j.advengsoft.2013.02.001 CrossRefGoogle Scholar
  3. 3.
    Barcellos CS, Mendonca PTR, Duarte CA (2009) A Ck continuous generalized finite element formulation applied to laminated kirchhoff plate model. Comput Mech 44:377–393.  https://doi.org/10.1007/s00466-009-0376-5 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bazǎnt ZP (1976) Instability, ductility, and size effects in strain-softening concrete. J Eng Mech 102(2):331–344Google Scholar
  5. 5.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620.  https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S CrossRefzbMATHGoogle Scholar
  6. 6.
    Bhardwaj G, Singh S, Singh I, Mishra B, Rabczuk T (2016) Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA. Theor Appl Fract Mech 85:294–319.  https://doi.org/10.1016/j.tafmec.2016.04.004 CrossRefGoogle Scholar
  7. 7.
    Budarapu PR, Gracie R, Bordas SP, Rabczuk T (2014) An adaptive multiscale method for quasi-static crack growth. Comput Mech 53(6):1129–1148.  https://doi.org/10.1007/s00466-013-0952-6 CrossRefzbMATHGoogle Scholar
  8. 8.
    Budarapu PR, Gracie R, Yang SW, Zhuang X, Rabczuk T (2014b) Efficient coarse graining in multiscale modeling of fracture. Theor Appl Fract Mech 69:126–143.  https://doi.org/10.1016/j.tafmec.2013.12.004 CrossRefGoogle Scholar
  9. 9.
    Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938.  https://doi.org/10.1016/0020-7683(95)00255-3 CrossRefzbMATHGoogle Scholar
  10. 10.
    Chan SK, Tuba IS, Wilson WK (1970) On the finite element method in linear fracture mechanics. Eng Fract Mech 30:227–231.  https://doi.org/10.1016/0013-7944(70)90026-3 Google Scholar
  11. 11.
    Charalambides RP, Meeking Mc (1987) Finite element method simulation of crack propagation in a brittle microcracking solids. Mech Mater 6:71–87.  https://doi.org/10.1016/0167-6636(87)90023-8 CrossRefGoogle Scholar
  12. 12.
    Chudnovsky AKMA, Dolgopolsky A (1987) Elastic interaction of a crack with a microcrack array-ii. Elastic solution for two crack configurations (piecewise constant and linear approximations). Int J Solids Struct 23(2):11–21.  https://doi.org/10.1016/0020-7683(87)90029 CrossRefzbMATHGoogle Scholar
  13. 13.
    Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. Wiley, New YorkGoogle Scholar
  14. 14.
    de Borst R, Sluys LJ, Muhlhaus HB, Pamin J (1993) Fundamental issues in finite element analyses of localisation of deformation. Eng Comput 10(2):99–121.  https://doi.org/10.1108/eb023897 CrossRefGoogle Scholar
  15. 15.
    Dolbow J, Gosz M (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int J Solids Struct 39:2557–2574.  https://doi.org/10.1016/S0020-7683(02)00114-2 CrossRefzbMATHGoogle Scholar
  16. 16.
    Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in mindlin-reissner plates with the extended finite element method. Int J Solids Struct 37:7161–7183.  https://doi.org/10.1016/S0020-7683(00)00194-3 CrossRefzbMATHGoogle Scholar
  17. 17.
    Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. Technical report, ECCOMAS thematic conference on meshless methods, technical report 06Google Scholar
  18. 18.
    Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197:487–504.  https://doi.org/10.1016/j.cma.2007.08.017 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Duarte CA, Oden JT (1995) Hp clouds - a meshless method to solve boundary-value problem. Tech. rep., TICAM, The University of Texas at Austin, technical ReportGoogle Scholar
  20. 20.
    Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232.  https://doi.org/10.1016/S0045-7949(99)00211-4 MathSciNetCrossRefGoogle Scholar
  21. 21.
    Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte CA (eds) Advances in meshfree techniques, pp 1–26.  https://doi.org/10.1007/978-1-4020-6095-3-1
  22. 22.
    Holl M, Loehnert S, Wriggers P (2013) An adaptive multiscale method for crack propagation and crack coalescence. Int J Numer Meth Eng 93:23–51.  https://doi.org/10.1002/nme.4373 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3d multiscale crack propagation using the xfem applied to a gas turbine blade. Comput Mech 53:173–188.  https://doi.org/10.1007/s00466-013-0900-5 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hu KX, Chandra A, Huang Y (1993) Multiple void-crack interaction. Int J Solids Struct 30(11):1473–1489.  https://doi.org/10.1016/0020-7683(93)90072-F CrossRefzbMATHGoogle Scholar
  25. 25.
    Ingraffea AR, Saouma V (1985) Numerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete. Martinus Nijhoff Publishers, Dordrecht, pp 171–225Google Scholar
  26. 26.
    Joseph P, Erdogan F (1991) Bending of a thin reissner plate with a through crack. J Appl Mech 58(3):842–846.  https://doi.org/10.1115/1.2897273 CrossRefGoogle Scholar
  27. 27.
    Kim D, Duarte C, Pereira J (2008) Analysis of interacting cracks using the generalized finite element method with global-local enrichment functions. J Appl Mech 75(5):051107.  https://doi.org/10.1115/1.2936240 CrossRefGoogle Scholar
  28. 28.
    Kim DJ, Pereira JP, Duarte CA (2010) Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshes. Int J Numer Meth Eng 81:335–365.  https://doi.org/10.1002/nme.2690 zbMATHGoogle Scholar
  29. 29.
    Lasry J, Pommier J, Renard Y, Salaun M (2010) eXtended finite element methods for thin cracked plates with kirchhoff-love theory. Int J Numer Meth Eng 84:1115–1138.  https://doi.org/10.1002/nme.2939 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Loehnert S, Belytschko T (2007a) Crack shielding and amplification due to multiple microcracks interacting with a macrocrack. Int J Fract 145:1–8.  https://doi.org/10.1007/s10704-007-9094-1 CrossRefzbMATHGoogle Scholar
  31. 31.
    Loehnert S, Belytschko T (2007b) A multiscale projection method for macro/microcrack simulations. Int J Numer Methods Geomech 71:1466–1482.  https://doi.org/10.1002/nme.2001 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Malekan M, Barros FB (2016) Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics. Comput Mech 58(5):819–831.  https://doi.org/10.1007/s00466-016-1318-7 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Malekan M, Barros FB, Pitangueira RLS, Alves PD (2016) An object-oriented class organization for global-local generalized finite element method. Latin Am J Solids Struct 13(13):2529–2551.  https://doi.org/10.1590/1679-78252832 CrossRefGoogle Scholar
  34. 34.
    Malekan M, Barros FB, Pitangueira RLS, Alves PD, Penna SS (2017) A computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditions. Eng Comput 34(3):988–1019.  https://doi.org/10.1108/EC-02-2016-0050 CrossRefGoogle Scholar
  35. 35.
    Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 39:289–314.  https://doi.org/10.1016/S0045-7825(96)01087-0 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mendonca PTR, Barcellos CS, Torres DAF (2011) Analysis of anisotropic mindlin plate model by continuous and non-continuous GFEM. Finite Elem Anal Des 47:698–717.  https://doi.org/10.1016/j.finel.2011.02.002 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150.  https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J CrossRefzbMATHGoogle Scholar
  38. 38.
    Nguyen VP (2005) An object oriented approach to the xfem with applications to fracture mechanics. Master’s thesis, EMMC-Hochiminh University of TechnologyGoogle Scholar
  39. 39.
    Noor AK (1986) Global-local methodologies and their application to nonlinear analysis. Finite Elem Anal Des 2:333–346.  https://doi.org/10.1016/0168-874X(86)90020-X CrossRefGoogle Scholar
  40. 40.
    Oden JT, Duarte CA, Zienkiewicz OC (1998) A new cloud-based hp finite element method. Comput Methods Appl Mech Eng 153:117–126.  https://doi.org/10.1016/S0045-7825(97)00039-X MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    O’Hara P, Duarte C, Eason T (2016) A two-scale GFEM for interaction and coalescence of multiple crack surfaces. Eng Fract Mech 163:274–302.  https://doi.org/10.1016/j.engfracmech.2016.06.009 CrossRefGoogle Scholar
  42. 42.
    Rice J (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans ASME J Appl Mech 35:379–386.  https://doi.org/10.1115/1.3601206 CrossRefGoogle Scholar
  43. 43.
    Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938.  https://doi.org/10.1016/0013-7944(77)90013-3 CrossRefGoogle Scholar
  44. 44.
    Singh I, Mishra B, Bhattacharya S (2011) XFEM simulation of cracks, holes and inclusions in functionally graded materials. Int J Mech Mater Des 7:199–218.  https://doi.org/10.1007/s10999-011-9159-1 CrossRefGoogle Scholar
  45. 45.
    Soh A, Yang C (2004) Numerical modeling of interactions between a macro-crack and a cluster of micro-defects. Eng Fract Mech 71:193–217.  https://doi.org/10.1016/S0013-7944(03)00097-3 CrossRefGoogle Scholar
  46. 46.
    Sosa HA, Eischen JW (1986) Computation of stress intensity factors for plate bending via a path-independent integral. Eng Fract Mech 25(4):451–462.  https://doi.org/10.1016/0013-7944(86)90259-6 CrossRefGoogle Scholar
  47. 47.
    Strouboulis T, Copps K, Babuška I (2000) The generalized finite element method: an example of its implementation and illustration of its performance. Int J Numer Methods Eng 47:1401–1417.  https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8%3c1401::AID-NME835%3e3.0.CO;2-8 MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Strouboulis T, Copps K, Babuška I (2001) The generalized finite element method. Comput Methods Appl Mech Eng 190:4081–4193.  https://doi.org/10.1016/S0045-7825(01)00188-8 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Swenson DV, Ingraffea AR (1988) Modeling mixed-mode dynamic crack propagation using finite elements: theory and applications. Comput Mech 3(5):381–397.  https://doi.org/10.1007/BF00301139 CrossRefzbMATHGoogle Scholar
  50. 50.
    Szabo B, Babuška I (1991) Finite element analysis. Wiley, New YorkzbMATHGoogle Scholar
  51. 51.
    Tada H, Paris PC, Irwin CR (2000) The stress analysis of cracks handbook, 3rd edn. ASME Press, New York.  https://doi.org/10.1115/1.801535 CrossRefGoogle Scholar
  52. 52.
    Talebi H, Silani M, Bordas SPA, Kerfriden P, Rabczuk T (2014) A computational library for multiscale modeling of material failure. Comput Mech 53:104–1071.  https://doi.org/10.1007/s00466-013-0948-2 MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Talebi H, Silani M, Rabczuk T (2015) Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Adv Eng Softw 80:82–90.  https://doi.org/10.1016/j.advengsoft.2014.09.016 CrossRefGoogle Scholar
  54. 54.
    Watwood V (1969) The finite element method for prediction of crack behaviour. Nucl Eng Des 11:323–332.  https://doi.org/10.1016/0029-5493(70)90155-X CrossRefGoogle Scholar
  55. 55.
    Yang SW, Budarapu PR, Mahapatra D, Bordas SP, Zi G, Rabczuk T (2015) A meshless adaptive multiscale method for fracture. Comput Mater Sci 96:382–395.  https://doi.org/10.1016/j.commatsci.2014.08.054 CrossRefGoogle Scholar
  56. 56.
    Yau JF, Wang SS, Corten HT (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Trans ASME J Appl Mech 47:335–341.  https://doi.org/10.1115/1.3153665 CrossRefzbMATHGoogle Scholar
  57. 57.
    Zeng Q, Liu Z, Xu D, Wang H, Zhuang Z (2016) Modeling arbitrary crack propagation in coupled shell/solid structures with x-fem. Int J Numer Meth Eng 106:1018–1040.  https://doi.org/10.1002/nme.5157 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Graduate Program in Structural Engineering (PROPEEs), School of EngineeringFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations