Advertisement

Computational Mechanics

, Volume 62, Issue 4, pp 725–743 | Cite as

A LATIN-based model reduction approach for the simulation of cycling damage

  • Mainak Bhattacharyya
  • Amelie Fau
  • Udo Nackenhorst
  • David Néron
  • Pierre Ladevèze
Original Paper

Abstract

The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.

Keywords

LATIN method Proper Generalised Decomposition Non-linear solid mechanics Damage Reduced order model 

Notes

Acknowledgements

The authors are grateful to the German Research Foundation (DFG) for funding the research through International Research Training Group 1627.

References

  1. 1.
    Aguado JV, Huerta A, Chinesta F, Cueto E (2015) Real-time monitoring of thermal processes by reduced-order modeling. Int J Numer Methods Eng 102:991–1017MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allier P-E, Chamoin L, Ladevèze P (2015) Proper generalized decomposition computational methods on a benchmark problem: introducing a new strategy based on constitutive relation error minimization. Adv Model Simul Eng Sci 2:1–25CrossRefGoogle Scholar
  3. 3.
    Ammar A, Zghal A, Morel F, Chinesta F (2015) On the space-time separated representation of integral linear viscoelastic models. C R Méc 343:247–263CrossRefGoogle Scholar
  4. 4.
    Atwell JA, King BB (2001) Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math Comput Model 33:1–19MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bellenger E, Bussy P (1998) Plastic and viscoplastic damage models with numerical treatment for metal forming processes. J Mater Process Technol 80–81:591–596CrossRefGoogle Scholar
  6. 6.
    Capaldo M, Guidault P-A, Néron D, Ladevèze P (2017) The reference point method, a hyper reduction technique: application to PGD-based nonlinear model reduction. Comput Methods Appl Mech Eng 322:483–514Google Scholar
  7. 7.
    Carlberg K, Bou-Mosleh C, Farhat C (2010) Efficient nonlinear model reduction via a least-squares petrov-galerkin projection and compressive tensor approximations. Int J Numer Methods Eng 86:155–181CrossRefzbMATHGoogle Scholar
  8. 8.
    Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78:808–817Google Scholar
  9. 9.
    Chinesta F, Ladevèze P (eds) (2014) PGD in linear and nonlinear computational solid mechanics. Springer, Vienna, pp 91–152Google Scholar
  10. 10.
    Chinesta F, Ladevèze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404CrossRefGoogle Scholar
  11. 11.
    Cognard J-Y, Ladevèze P (1993) A large time increment approach for cyclic viscoplasticity. Int J Plast 9:141–157CrossRefzbMATHGoogle Scholar
  12. 12.
    Cojocaru D, Karlsson A (2006) A simple numerical method of cycle jumps for cyclically loaded structures. Int J Fatigue 28:1677–1689CrossRefGoogle Scholar
  13. 13.
    de Souza Neto E, Perić D, Owen D (2008) Computational methods for plasticity. Wiley, ChichesterCrossRefGoogle Scholar
  14. 14.
    El Halabi F, González D, Sanz-Herrera J, Doblaré M (2016) A PGD-based multiscale formulation for non-linear solid mechanics under small deformations. Comput Methods Appl Mech Eng 305:806–826MathSciNetCrossRefGoogle Scholar
  15. 15.
    Galvis J, Kang SK (2014) Spectral multiscale finite element for nonlinear flows in highly heterogeneous media: a reduced basis approach. J Comput Appl Math 260:494–508MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283:210–223CrossRefzbMATHGoogle Scholar
  17. 17.
    Grepl M, Maday Y, Nguyen N, Patera A (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Modél Math Anal Numér 41:575–605MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Guennouni T (1988) Sur une méthode de calcul de structures soumises à des chargements cycliques : l’homogénéisation en temps. Modél Math Anal Numér 22:417–455MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heyberger C, Boucard P-A, Néron D (2012) Multiparametric analysis within the proper generalized decomposition framework. Comput Mech 49(3):277–289CrossRefzbMATHGoogle Scholar
  20. 20.
    Kachanov LM (1986) Introduction to continuum damage mechanics, mechanics of elastic stability. Springer, BerlinCrossRefzbMATHGoogle Scholar
  21. 21.
    Kerfriden P, Gosselet P, Adhikari S, Bordas S (2011) Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adpative model reduction for highly nonlinear mechanical problems. Comput Methods Appl Mech Eng 200:850–866CrossRefzbMATHGoogle Scholar
  22. 22.
    Kunish K, Xie L (2005) Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation. Comput Math Appl 49(7–8):5730–5742MathSciNetGoogle Scholar
  23. 23.
    Ladevèze P (1989) The large time increment method for the analyse of structures with nonlinear constitutive relation described by internal variables. C R Acad Sci Paris 309:1095–1099zbMATHGoogle Scholar
  24. 24.
    Ladevèze P (1999) Nonlinear computational structural mechanics, mechanical engineering series. Springer, New YorkCrossRefGoogle Scholar
  25. 25.
    Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation, mechanical engineering series. Springer, New YorkzbMATHGoogle Scholar
  26. 26.
    Ladevèze P (2016) On reduced models in nonlinear solid mechanics. Eur J Mech A Solids 60:227–237MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28):3061–3087MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ladevèze P, Néron D, Passieux J-C (2009) On multiscale computational mechanics with time-space homogenization. In: Fish J (ed) Multiscale methods–bridging the scales in science and engineering. Oxford University Press, Oxford, pp 247–282Google Scholar
  29. 29.
    Ladevèze P, Passieux J-C, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199:1287–1296MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lemaitre J (1985) Coupled elasto-plasticity and damage constitutive equations. Comput Methods Appl Mech Eng 51:31–49CrossRefzbMATHGoogle Scholar
  31. 31.
    Lemaitre J, Chaboche J-L (1990) Mechanics of solid materials. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  32. 32.
    Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, BerlinGoogle Scholar
  33. 33.
    Lemaitre J, Sermage J, Desmorat R (1999) A two scale damage concept applied to fatigue. Int J Fract 97:67–81CrossRefGoogle Scholar
  34. 34.
    Maday Y, Ronquist EM (2004) The reduced-basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Maitournam H, Pommier B, Thomas J-J (2002) Détermination de la réponse asymptotique d’une structure anélastique sous chargement thermodynamique cyclique. C. R. Mec 330:703–708CrossRefzbMATHGoogle Scholar
  36. 36.
    Metoui S, Prulière E, Ammar A, Dau F, Iordanoff I (2014) The proper generalized decomposition for the simulation of delamination using cohesive zone model. Int J Numer Methods Eng 99:1000–1022CrossRefzbMATHGoogle Scholar
  37. 37.
    Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, solid mechanics and its applications. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    Néron D, Boucard P-A, Relun N (2015) Time-space PGD for the rapid solution of 3D nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103:275–292MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Nguyen N, Veroy K, Patera A (2005) Certified real-time solution of parametrized partial differential equations, handbook of materials modeling. Springer, Berlin, pp 1523–1558Google Scholar
  40. 40.
    Prud’homme C, Rovas D, Veroyand K, Machiels L, Maday Y, Patera A, Turinici G (2002) Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng 124:70–80CrossRefGoogle Scholar
  41. 41.
    Relun N, Néron D, Boucard P (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51:83–92Google Scholar
  42. 42.
    Relun N, Néron D, Boucard P-A (2011) Multiscale elastic-viscoplastic computational analysis. Eur J Comput Mech 20:379–409CrossRefzbMATHGoogle Scholar
  43. 43.
    Relun N, Néron D, Boucard P-A (2013) A model reduction technique based on the PGD for elastic-viscoplastic computational analysis. Comput Mech 51:83–92MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Rozza G (2005) Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity. Appl Numer Math 55(4):403–424MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Rozza V, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229–275MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ruhe A (1983) Numerical aspects of Gram–Schmidt orthogonalization of vectors. Linear Algebra Appl 52:591–601MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Ryckelynck D, Missoum Benziane D, Cartel S, Besson J (2011) A robust adaptive model reduction method for damage simulations. Comput Mater Sci 50:1597–1605CrossRefGoogle Scholar
  48. 48.
    Stolz C (2008) Optimal control approach in nonlinear mechanics. C. R. Mec 336:238–244CrossRefzbMATHGoogle Scholar
  49. 49.
    Veroy K, Patera AT (2005) Certified real-time solution of the parametrized steady incompressible navier-stokes equations: rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids 47:773–788MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Mainak Bhattacharyya
    • 1
    • 2
  • Amelie Fau
    • 1
  • Udo Nackenhorst
    • 1
  • David Néron
    • 2
  • Pierre Ladevèze
    • 2
  1. 1.IBNMLeibniz Universität HannoverHannoverGermany
  2. 2.LMT, ENS Paris-Saclay, CNRSUniversité Paris-SaclayCachanFrance

Personalised recommendations