Advertisement

Computational Mechanics

, Volume 60, Issue 5, pp 767–796 | Cite as

Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy

  • M. Cervera
  • G. B. Barbat
  • M. Chiumenti
Original Paper

Abstract

This paper discusses the finite element modeling of cracking in quasi-brittle materials. The problem is addressed via a mixed strain/displacement finite element formulation and an isotropic damage constitutive model. The proposed mixed formulation is fully general and is applied in 2D and 3D. Also, it is independent of the specific finite element discretization considered; it can be equally used with triangles/tetrahedra, quadrilaterals/hexahedra and prisms. The feasibility and accuracy of the method is assessed through extensive comparison with experimental evidence. The correlation with the experimental tests shows the capacity of the mixed formulation to reproduce the experimental crack path and the force–displacement curves with remarkable accuracy. Both 2D and 3D examples produce results consistent with the documented data. Aspects related to the discrete solution, such as convergence regarding mesh resolution and mesh bias, as well as other related to the physical model, like structural size effect and the influence of Poisson’s ratio, are also investigated. The enhanced accuracy of the computed strain field leads to accurate results in terms of crack paths, failure mechanisms and force displacement curves. Spurious mesh dependency suffered by both continuous and discontinuous irreducible formulations is avoided by the mixed FE, without the need of auxiliary tracking techniques or other computational schemes that alter the continuum mechanical problem.

Keywords

Damage Cracking Mixed finite elements Strain localization Structural failure 

References

  1. 1.
    Rashid Y (1968) Ultimate strength analysis of prestressed concrete pressure vessels. Nucl Eng Des 7(4):334–344CrossRefGoogle Scholar
  2. 2.
    Bazant Z, Oh B (1983) Crack band theory for fracture of concrete. Matér Constr 16(3):155–177CrossRefGoogle Scholar
  3. 3.
    Rots J, Nauta P, Kusters G (1984) Variable reduction factor for the shear stiffness of cracked concrete. Rep. BI-84 Ins. TNO for Build Mat. Struct. Delft 33Google Scholar
  4. 4.
    de Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2:35–46CrossRefGoogle Scholar
  5. 5.
    de Borst R (1987) Smeared cracking, plasticity, creep and thermal loading: a unified approach. Comp Meth Appl Mech Eng 62(99):89–110CrossRefzbMATHGoogle Scholar
  6. 6.
    Bazant Z, Pijaudier-Cabot G (1988) Nonlocal continum damage, localization instabilities and convergence. J Eng Mech 55:287–293zbMATHGoogle Scholar
  7. 7.
    Peerlings R, de Borst R, Brekelmans W, de Wree J (1996) Gradient enhanced damage for quasi brittle materials. Int J Numer Method Eng 39:3391–3403CrossRefzbMATHGoogle Scholar
  8. 8.
    de Borst R, Verhoosel C (2016) Gradient damage vs phase-field approaches for fracture: Similarities and differences. Comput Method Appl Mech Eng doi: 10.1016/j.cma.2016.05.015
  9. 9.
    Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Method Eng 83:1273–1311CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Miehe C, Schänzel L-M, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. Part I. Balance of cracks surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Method Appl Mech Eng 294:449–485CrossRefMathSciNetGoogle Scholar
  11. 11.
    Vignollet J, May S, de Borst R, Verhoosel C (2014) Phase-field model for brittle and cohesive fracture. Meccanica 49:2587–2601CrossRefMathSciNetGoogle Scholar
  12. 12.
    Wu J-Y (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99CrossRefMathSciNetGoogle Scholar
  13. 13.
    Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle faillure. Adv Appl Math 7:55–129Google Scholar
  14. 14.
    Ngo D, Scordelis A (1967) Finite element analysis of reinforced concrete beams. ACI J 64(14):152–163Google Scholar
  15. 15.
    Areias P, Msekh M, Rabczuk T (2016) Damage and fracture algorithm using the screened Poisson equation and local remeshing. Eng Fract Mech 158:116–143CrossRefGoogle Scholar
  16. 16.
    Areias P, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Method Eng 94:1099–1122CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Areias P, Rabczuk T, Dias-da-Costa D (2013) Element-wise fracture algorithm based on rotation of edges. Eng Fract Mech 110:113–137CrossRefzbMATHGoogle Scholar
  18. 18.
    Areias P, Reinoso J, Camanho P, Rabczuk T (2015) A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Comput Mech 56:291–315CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Schellekens J (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solid Struct 30(9):1239–1253CrossRefzbMATHGoogle Scholar
  20. 20.
    Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22(4):235–242CrossRefGoogle Scholar
  21. 21.
    Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comp Method Appl Mech Eng 140:329–359CrossRefzbMATHGoogle Scholar
  22. 22.
    Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1–4):279–297CrossRefGoogle Scholar
  23. 23.
    Dvorkin E, Cuitino A, Gioia G (1990) Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distorsions. Int J Numer Method Eng 30:541–564CrossRefzbMATHGoogle Scholar
  24. 24.
    Oliver J, Cervera M, Manzoli O (1999) Strong discontinuities and continuum plasticity models: the strong discontinuity approach. Int J Plast 15(3):319–351CrossRefzbMATHGoogle Scholar
  25. 25.
    Gasser T, Holzapfel G (2003) Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comp Method Appl Mech Eng 192:5059–5098CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Motamedi M, Weed D, Foster C (2016) Numerical simulation of mixed mode (I and II) fracture behaviour pf pre-cracked rock using the strong discontinuity approach. Int J Solid Struct 85–86:44–56CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Lackner R, Zeiml M, Mang H (2015) Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack tracking strategy, and validations. Comp Method Appl Mech Eng 287:335–366CrossRefMathSciNetGoogle Scholar
  28. 28.
    Su X, Yang Z, Liu G (2010) Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus. Acta Mec Solida Sin 23(3):271–282CrossRefGoogle Scholar
  29. 29.
    Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Method Eng 46(1):131–150CrossRefzbMATHGoogle Scholar
  30. 30.
    Gasser T, Holzapfel G (2005) Modeling 3D crack propagation in unreinforced concrete using PUFEM. Comp Method Appl Mech Eng 194:2859–2896CrossRefzbMATHGoogle Scholar
  31. 31.
    Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3D multiscale crack propagation using the XFEM applied to a gas turbine blade. Comput Mech 53:173–188CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Meschke G, Dumstorff P (2007) Energy-based modeling of cohesive and cohesion-less cracks via X-FEM. Comp Method Appl Mech Eng 196:2338–2357CrossRefzbMATHGoogle Scholar
  33. 33.
    Wu J-Y, Li F-B (2015) An improved stable X-FEM (Is-FEM) with a novel enrichment function for the computational modeling of cohesive cracks. Comp Method Appl Mech Eng 295:77–107CrossRefGoogle Scholar
  34. 34.
    Areias P, Belytschko T (2005) Analysis of three-dimensional crack initiation and propagation using the extended finite element method. Int J Numer Meth Eng 63:760–788CrossRefzbMATHGoogle Scholar
  35. 35.
    Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comp Method Appl Mech Eng 196:2777–2799CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Method Eng 63:1559–1582CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Method Eng 61:2316–2343CrossRefzbMATHGoogle Scholar
  38. 38.
    Zhuang X, Augarde C, Bordas S (2011) Accurate fracture modelling using meshless methods, the visibility criterion and level sets: formulation and 2D modelling. Int J Numer Method Eng 86:249–268CrossRefzbMATHGoogle Scholar
  39. 39.
    Zhuang X, Augarde C, Mathisen K (2012) Fracure modeling using meshless methods and level sets in 3D: framework and modeling. Int J Numer Method Eng 92:969–998CrossRefzbMATHGoogle Scholar
  40. 40.
    Nguyen G, Nguyen C, Nguyen P, Bui H, Shen L (2016) A size-dependent constitutive modelling framework for localized faillure analysis. Comput Mech 58:257–280. doi: 10.1007/s00466-016-1293-z CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Annavarapu C, Settgast R, Vitali E, Morris J (2016) A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods. Comp Method Appl Mech Eng 311:815–837CrossRefMathSciNetGoogle Scholar
  42. 42.
    Dumstorffz P, Meschke G (2007) Crack propagation criteria in the framework of X-FEM-based structural analysis. Int J Numer Anal Meth Geomech 31:239–259CrossRefzbMATHGoogle Scholar
  43. 43.
    Kim J, Armero F (2017) Three-dimensional finite elements with embedded strong discontinuities for the analysis of solids at faillure in the finite deformation range. Comput Method Appl Mech Eng doi: 10.1016/j.cma.2016.12.038
  44. 44.
    Riccardi F, Kishta E, Richard B (2017) A step-by-step global crack-tracking approach in E-FEM simulations of quasi-brittle materials. Eng Fract Mech 170:44–58CrossRefGoogle Scholar
  45. 45.
    Dias-da- Costa D, Alfaiate J, Sluys L, Júlio E (2010) “A comparative study on the modelling of discontinuous fracture by means of enriched nodal and element techniques and interface elements”. Int J Fract 161(1):97–119CrossRefzbMATHGoogle Scholar
  46. 46.
    Jirasek M (2000) Comparative study on finite elements with embedded discontinuities. Comput Methods Appl Mech Eng 188:307–330CrossRefzbMATHGoogle Scholar
  47. 47.
    Rabczuk T (2013) Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Appl Math doi: 10.1155/2013/849231
  48. 48.
    Cervera M, Chiumenti M, Codina R (2011) Mesh objective modelling of cracks using continuous linear strain and displacement interpolations. Int J Numer Method Eng 87(10):962–987CrossRefzbMATHGoogle Scholar
  49. 49.
    Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation. Comp Method Appl Mech Eng 199(37–40):2559–2570CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Cervera M, Chiumenti M, Codina R (2010) Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization. Comp Method Appl Mech Eng 199(37–40):2571–2589CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Cervera M, Chiumenti M, Benedetti L, Codina R (2015) Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity. Comp Method Appl Mech Eng 285:752–775CrossRefMathSciNetGoogle Scholar
  52. 52.
    Gil A, Lee C, Bonet J, Aguirre M (2014) A stabilized Petrov–Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Comp Method Appl Mech Eng 276:659–690CrossRefGoogle Scholar
  53. 53.
    Lafontaine N, Rossi R, Cervera M, Chiumenti M (2015) Explicit mixed strain-displacement finite element for dynamic geometrically non-linear solid mechanics. Comput Mech 55:543–559CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Cervera M, Chiumenti M (2009) Size effect and localization in J2 plasticity. Int J Solid Struct 46:3301–3312CrossRefzbMATHGoogle Scholar
  55. 55.
    Benedetti L, Cervera M, Chiumenti M (2017) 3D modelling of twisting cracks under bending and torsion skew notched beams. Eng Fract Mech 176:235–256CrossRefGoogle Scholar
  56. 56.
    Chiumenti M, Cervera M, Codina R (2014) A mixed three-field FE formulation for stress accurate analysis including the incompressible limit. Comp Method Appl Mech Eng 283:1095–1116CrossRefMathSciNetGoogle Scholar
  57. 57.
    Hellinger E (1914) Die allegemeinen Ansätze der Mechanik der Kontinua, Art 30. In: Klein F, Muller C (eds) Encyclopädie der Matematischen Wissenschaften. Teubner, Leipzig, pp 654–655Google Scholar
  58. 58.
    Reissner E (1958) On variational principles of elasticity. Proc Symp Appl Math 8:1–6CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Zienkiewicz O, Taylor R, Zhu Z (1989) The finite element method, vol 1, 7th edn. Elsevier, AmsterdamGoogle Scholar
  60. 60.
    Babuska I (1971) Error-bounds for finite element method. Numer Math 16:322–333CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer, BerlinCrossRefzbMATHGoogle Scholar
  62. 62.
    Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. ESAIM Math Modell Numer Anal Modél Mathé Anal Numér 8(R2):151zbMATHMathSciNetGoogle Scholar
  63. 63.
    Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comp Method Appl Mech Eng 190:1579–1599Google Scholar
  64. 64.
    Hughes T, Feijoo G, Mazzei L, Quincy J (1998) The variational multiscale method: a paradigm for computational mechanics. Comp Method Appl Mech Eng 166:3–24CrossRefzbMATHMathSciNetGoogle Scholar
  65. 65.
    Hughes T, Franca L, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska–Brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accomodating equal-order interpolations. Comp Method Appl Mech Eng 59(1):85–99CrossRefzbMATHGoogle Scholar
  66. 66.
    Cervera M, Agelet de Saracibar C, Chiumenti M (2002) COMET: coupled mechanical and thermal analysis. Data Input manuel, version 5.0, Technical report IT-308. http://www.cimne.upc.edu
  67. 67.
    GiD (2002) the personal pre and post-processor. In: CIMNE, Technical University of Catalonia. http://gid.cimne.upc.ed
  68. 68.
    Winkler B (2001) Traglastuntersuchungen von unbewehrten und bewerhrten Betonskrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton. Ph.D. Thesis, Universität InnsbruckGoogle Scholar
  69. 69.
    Trunk B (2000) Einfluss der Bauteilgrösse auf die Bruchenergie Von Beton. Aedificatio publishers, FreiburgGoogle Scholar
  70. 70.
    Gálvez J, Elices M, Guinea G, Planas J (1998) Mixed mode fracture of concrete under proportional and nonproportional loading. Int J Fract 94:267–284CrossRefGoogle Scholar
  71. 71.
    Cervera M, Pela L, Clemente R, Roca P (2010) A crack-tracking technique for localized damage in quasi-brittle materials. Eng Fract Mech 77:2431–2450CrossRefGoogle Scholar
  72. 72.
    Ingraffea A, Grigoriu M (1990) Probabilistic Fracture Mechanics: a validation of predictive capability. Tech Rep 90–8, DTIC DocumentGoogle Scholar
  73. 73.
    Miehe C, Gürses E (2007) A robust algorithm for the configurational-force-driven brittle crack propagation with R-adaptative mesh alignment. Int J Numer Method Eng 72:127–155CrossRefzbMATHGoogle Scholar
  74. 74.
    Bocca P, Carpinteri A, Valente S (1991) Mixed mode fracture of concrete. Int. J. Solid Struct 27(9):1139–1153CrossRefGoogle Scholar
  75. 75.
    Saleh A, Aliabadi M (1995) Crack growth analysis in concrete using boundary element method. Eng Fract Mech 51(4):533–545CrossRefGoogle Scholar
  76. 76.
    Areias P, Rabczuk T, César de Sá J (2016) A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Comput Mech 58:1003–1018CrossRefMathSciNetGoogle Scholar
  77. 77.
    Buchholz F, Chergui A, Richard H (2004) Fracture analyses and experimental results of crack growth under general mixed mode loading conditions. Eng Fract Mech 71:455–468CrossRefGoogle Scholar
  78. 78.
    Citarella R, Buchholz F (2008) Comparison of crack growth simulation by DBEM and FEM for SEN-specimens undergoing torsion or bending loading. Eng Fract Mech 75:489–509CrossRefGoogle Scholar
  79. 79.
    Ferte G, Massin P, Moës N (2016) 3D crack propagation with cohesive elements in the extended finite element method. Comp Method Appl Mech Eng 300:347–374CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.International Center for Numerical Methods in Engineering (CIMNE)Technical University of Catalonia – BarcelonaTECHBarcelonaSpain

Personalised recommendations