Advertisement

Computational Mechanics

, Volume 60, Issue 2, pp 219–233 | Cite as

A-posteriori error estimation for the finite point method with applications to compressible flow

  • Enrique Ortega
  • Roberto Flores
  • Eugenio Oñate
  • Sergio Idelsohn
Original Paper

Abstract

An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

Keywords

Meshless Error estimate Adaptivity Compressible flow 

Notes

Acknowledgements

Part of this work was developed within the ALEF (Aerodynamic Loads Estimation at Extremes of the Flight Envelope) project under the European Commission’s 7th Framework Programme (contract number ACP7-GA-2009-211785). The authors gratefully acknowledge the support provided.

References

  1. 1.
    Roache PJ (1997) Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech 29:123–160MathSciNetCrossRefGoogle Scholar
  2. 2.
    Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Prog Aerosp Sci 38:209–272CrossRefGoogle Scholar
  3. 3.
    Roy CJ (2005) Review of code and solution verification procedures for computational simulation. J Comput Phys 205:131–156CrossRefMATHGoogle Scholar
  4. 4.
    Thacker BH et al (2004) Concepts of model verification and validation. Los Alamos National Laboratory, LA-14167-MSGoogle Scholar
  5. 5.
    Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24:337–357MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery (SPR) and a-posteriori error estimates. Part 2: error estimates and adaptivity. Int J Numer Methods Eng 33:1365–1382CrossRefMATHGoogle Scholar
  7. 7.
    Babuska I, Miller A (1984) Post-processing approach in the finite element method. Part 3: a-posteriori error estimates and adaptive mesh selection. Int J Numer Methods Eng 20(12):2311–2324CrossRefMATHGoogle Scholar
  8. 8.
    Oden JT, Wu W, Ainsworth M (1993) An a-posteriori error estimate for finite element approximations of the Navier–Stokes equations. Comput Methods Appl Mech Eng 111:185–202MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chang S, Haworth DC (1997) Adaptive grid refinement using cell-level and global imbalances. Int J Numer Methods Fluids 24:375–392CrossRefMATHGoogle Scholar
  10. 10.
    Oden JT, Prudhomme S (1999) New approaches to error estimation and adaptivity for the Stokes and Oseen equations. Int J Numer Methods Fluids 31:3–15MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Oñate E et al (2006) Error estimation and mesh adaptivity in incompressible viscous flows using a residual power approach. Comput Methods Appl Mech Eng 195:339–362MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Venditti DA, Darmofal DL (2000) Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one dimensional flow. J Comput Phys 164:204–227MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Fidkowski KJ, Darmofal DL (2011) Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J 49(4):673–694CrossRefGoogle Scholar
  14. 14.
    Dwight RP (2008) Heuristic a-posteriori estimation of error due to dissipation in finite volume schemes with application to mesh adaptation. J Comput Phys 227(5):2845–2863CrossRefMATHGoogle Scholar
  15. 15.
    Zhang XD, Trépanier JY, Camarero R (2000) A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws. Comput Methods Appl Mech Eng 185:1–19MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hay A, Visonneau M (2006) Error estimation using the error transport equation for finite-volume methods and arbitrary meshes. Int J Comput Fluid Dyn 20(7):463–479MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shih T, Qin Y (2007) A-posteriori method for estimating and correcting grid-induced errors in CFD solutions. Part 1: theory and method. AIAA Paper 2007-100Google Scholar
  18. 18.
    Roy CJ (2009) Strategies for driving mesh adaption in CFD. AIAA Paper 2009-1302Google Scholar
  19. 19.
    Muzaferija S, Gosman D (1996) Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. J Comput Phys 138:766–787MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Blottner FG, Lopez AR (1998) Determination of solution accuracy of numerical schemes as part of code and calculation verification. SANDIA report SAND98-2222Google Scholar
  21. 21.
    Berger MJ, Jameson A (1985) Automatic adaptive grid refinement for the Euler equations. Retrieved from http://hdl.handle.net/2060/19840009909
  22. 22.
    Baker TJ (1997) Mesh adaptation strategies for problems in fluid dynamics. Finite Elem Anal Des 25:243–273MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Aftosmis MJ, Berger M (2002) Multilevel error estimation and adaptive h-refinement for cartesian meshes with embedded boundaries. AIAA Paper 2002-0863Google Scholar
  24. 24.
    Fulton SR (2003) On the accuracy of multigrid truncation error estimates. Electron Trans Numer Anal 15:29–37MathSciNetMATHGoogle Scholar
  25. 25.
    Gao H, Wang ZJ (2011) A residual-based procedure for hp-adaptation on 2D hybrid meshes. AIAA Paper 2011-492Google Scholar
  26. 26.
    Richardson LF (1910) The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos Trans R Soc Lond Ser A 210(459–470):307–357MATHGoogle Scholar
  27. 27.
    Richardson LF, Gaunt JA (1927) The deferred approach to the limit. Philos Trans R Soc Lond Ser A 226(636–646):299–349CrossRefMATHGoogle Scholar
  28. 28.
    Cadafalch J et al (2002) Verification of finite volume computations on steady-state fluid flow and heat transfer. J Fluids Eng 124:11–21CrossRefGoogle Scholar
  29. 29.
    Roy CJ, Blottner FG (2003) Methodology for turbulence model validation: application to hypersonic flows. J Spacecr Rockets 40(3):313–325CrossRefGoogle Scholar
  30. 30.
    Roy CJ (2003) Grid convergence error analysis for mixed-order numerical schemes. AIAA J 41:595–604CrossRefGoogle Scholar
  31. 31.
    Salas MD (2006) Some observations on grid convergence. Comput Fluids 35:688–692Google Scholar
  32. 32.
    Roache PJ (1994) Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng 116:405–413CrossRefGoogle Scholar
  33. 33.
    Barth TJ (1991) A 3D upwind euler solver for unstructured meshes. AiAA Paper 1991-1548Google Scholar
  34. 34.
    Zhang Z, Naga A (2005) A new finite element gradient recovery method: superconvergence property. SIAM J Sci Comput 26(4):1192–1213MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Cueto-Felgueroso L et al (2007) Finite volume solvers and moving least-squares approximations for the compressible Navier–Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 196(45–48):4712–4736MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Duarte CA, Oden JT (1996) An h-p adaptive method using clouds. Comput Methods Appl Mech Eng 139:237–262MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Liu WK et al (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24(12):1391–1415MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Gavete L, Cuesta JL, Ruiz A (2002) A numerical comparison of two different approximations of the error in a meshless method. Eur J Mech Solids 21:1037–1054CrossRefMATHGoogle Scholar
  39. 39.
    Lee CK, Zhou CE (2004) On error estimation and adaptive refinement for element free Galerkingmethod. Part I: stress recovery and a posteriori error estimation. Comput Struct 82:413–428CrossRefGoogle Scholar
  40. 40.
    Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63:1559–1582MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Li Q, Lee K-M (2006) An adaptive meshless method for magnetic field computation. IEEE Trans Magn 42(8):1996–2003CrossRefGoogle Scholar
  42. 42.
    Angulo A, Pérez Pozo L, Perazzo F (2009) A posteriori error estimator and an adaptive technique in meshless finite point method. Eng Anal Bound Elem 33(11):1322–1338MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    You Y, Chen JS, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31(3–4):316–326MATHGoogle Scholar
  44. 44.
    Perazzo F, Löhner R, Perez-Pozo L (2007) Adaptive methodology for meshless finite point method. Adv Eng Softw 39:156–166CrossRefGoogle Scholar
  45. 45.
    Afshar MH, Lashckarbolok M (2008) Collocated discrete least-squares (CDLS) meshless method: error estimate and adaptive refinement. Int J Numer Methods Fluids 56:1909–1928CrossRefMATHGoogle Scholar
  46. 46.
    Boroomand B, Najjar M, Oñate E (2009) The generalized finite point method. Comput Mech 44(2):173–190MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Rüter M, Chen JS (2015) A multi-space error estimation approach for meshfree methods. In: Conference applications of mathematics 2015. PragueGoogle Scholar
  48. 48.
    Oñate E et al (1996) A stabilized Finite Point Method for analysis of fluid mechanics problems. Comput Methods Appl Mech Eng 139:315–346MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Löhner R et al (2002) A Finite Point Method for compressible flow. Int J Numer Methods Eng 53:1765–1779CrossRefMATHGoogle Scholar
  50. 50.
    Ortega E, Oñate E, Idelsohn S (2009) A finite point method for adaptive three-dimensional compressible flow calculations. Int J Numer Methods Fluids 60:937–971MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Ortega E, Oñate E, Idelsohn S (2007) An improved finite point method for three-dimensional potential flows. Comput Mech 40:949–963MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Ortega E et al (2014) Comparative accuracy and performance assessment of the finite point method in compressible flow problems. Comput Fluids 59:53–65MathSciNetCrossRefGoogle Scholar
  53. 53.
    Fischer T (1996) A contribution to adaptive numerical solution of compressible flow problems. Universitat Politècnica de Catalunya, BarcelonaMATHGoogle Scholar
  54. 54.
    Chen R, Chen Y (2008) Error estimates for the finite point method. Appl Numer Math 58(6):884–898MathSciNetCrossRefGoogle Scholar
  55. 55.
    Katz A (2009) Meshless methods for computational fluid dynamics. ProQuest dissertations and theses, Thesis (Ph.D.), Stanford UniversityGoogle Scholar
  56. 56.
    Ortega E, Oñate E, Idelsohn S, Flores R (2014) Comparative accuracy and performance assessment of the Finite Point Method in compressible flow problems. Comput Fluids 89:53–65MathSciNetCrossRefGoogle Scholar
  57. 57.
    Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43:357–372MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Turkel E (1988) Improving the accuracy of central difference schemes. ICASE Report 88-53Google Scholar
  59. 59.
    Van Albada GD, Van Leer B, Roberts WWJ (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:76–84MATHGoogle Scholar
  60. 60.
    Jameson A (1993) Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows. AIAA-93-3359Google Scholar
  61. 61.
    Jameson A, Baker TJ (1987) Improvements to the aircraft Euler method. AIAA Paper 87-0452Google Scholar
  62. 62.
    Van Leer B (1979) Towards the ultimate conservative difference scheme. V, A second order sequel to Godunov’s method. J Comput Phys 32:101–136CrossRefMATHGoogle Scholar
  63. 63.
    Berger M, Aftosmis MJ (2005) Analysis of slope limiters on irregular grids. AIAA Paper 2005-0490Google Scholar
  64. 64.
    Harten A et al (1987) Uniformly high-order accurate essential non-oscillatory schemes III. J Comput Phys 71:231–303MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Liu X, Osher S, Chen TF (1994) Weighted essential non-oscillatory schemes. J Comput Phys 115:200–212MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Qiu J, Shu C (2003) Hermite WENO schemes and their application as limiters for the Runge–Kutta discontinuous Galerking method: one dimensional case. J Comput Phys 193:115–135CrossRefMATHGoogle Scholar
  67. 67.
    Serna S, Marquina A (2004) Power ENO methods: a fifth-order accurate weighted power ENO method. J Comput Phys 194:632–658MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1. Butterworth-Heinemann, OxfordMATHGoogle Scholar
  69. 69.
    Ortega E et al (2013) A meshless finite point method for three-dimensional analysis of compressible flow problems involving moving boundaries and adaptivity. Int J Numer Methods Fluids 73(4):323–343MathSciNetCrossRefGoogle Scholar
  70. 70.
    Loving D, Estabrooks B (1951) Transonic-wing investigation in the Langley 8-foot high-speed tunnel at high subsonic Mach numbers and at a Mach number of 1.2. Analysis of pressure distribution of wing-fuselage configuration having a wing of \(45^{{\rm o}}\) sweepback, aspect ratio 4, taper ratio 0.6, and NACA 65A006 airfoil section. National Advisory Committee for Aeronautics. Research Memorandum NACA RM L51F07Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Enrique Ortega
    • 1
  • Roberto Flores
    • 1
  • Eugenio Oñate
    • 1
  • Sergio Idelsohn
    • 1
    • 2
  1. 1.Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations