Advertisement

Computational Mechanics

, Volume 60, Issue 1, pp 83–100 | Cite as

A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations

  • Y. Bazilevs
  • K. Kamran
  • G. Moutsanidis
  • D. J. Benson
  • E. Oñate
Original Paper

Abstract

In this two-part paper we begin the development of a new class of methods for modeling fluid–structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a Meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.

Keywords

Air blast FSI Immersed methods FEM IGA RKPM 

Notes

Acknowledgements

KK was supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund program of the Marie Curie Actions of the 7th R&D Framework Program of the European Union under the Beatriu de Pinós grant. YB was partially supported by the ARO W911NF-14-1-0296 award. This support is gratefully acknowledged. The numerical examples were computed in the open-source parallel multiphysics software platform of KRATOS [90] developed at CIMNE. The pre- and post-processing of data is provided by the GID [91] software.

References

  1. 1.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci 22(supp02):1230002CrossRefzbMATHGoogle Scholar
  3. 3.
    Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  5. 5.
    Bazilevs Y, Takizawa K, Tezduyar TE (2013) Challenges and directions in computational fluid–structure interaction. Math Models Methods Appl Sci 23:215–221MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bazilevs Y, Takizawa K, Tezduyar TE (2015) New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods. Math Models Methods Appl Sci 25:2217–2226MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94(3):339–351MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNetzbMATHGoogle Scholar
  9. 9.
    Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94(3):353–371MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130CrossRefzbMATHGoogle Scholar
  11. 11.
    Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19:171–225MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900CrossRefzbMATHGoogle Scholar
  14. 14.
    Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48:247–267MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Takizawa K, Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sci 22(supp02):1230001Google Scholar
  16. 16.
    Takizawa K, Montes D, McIntyre S, Tezduyar TE (2013) Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers. Math Models Methods Appl Sci 23:223–248MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and space–time methods. Arch Comput Methods Eng 21:481–508MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Takizawa K (2014) Computational engineering analysis with the new-generation space–time methods. Comput Mech 54:193–211MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Takizawa K, Tezduyar TE, Boswell C, Tsutsui Y, Montel K (2015) Special methods for aerodynamic-moment calculations from parachute FSI modeling. Comput Mech 55:1059–1069CrossRefGoogle Scholar
  21. 21.
    Takizawa K, Tezduyar TE, Kolesar R (2015) FSI modeling of the Orion spacecraft drogue parachutes. Comput Mech 55:1167–1179CrossRefzbMATHGoogle Scholar
  22. 22.
    Takizawa K, Tezduyar TE, Kuraishi T (2015) Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires. Math Models Methods Appl Sci 25:2227–2255MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Takizawa K, Tezduyar TE, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space–time VMS method for flow computations with slip interfaces (ST-SI). Math Models Methods Appl Sci 25:2377–2406MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Takizawa K, Tezduyar TE, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Takizawa K, Tezduyar TE, Hattori H (2017) Computational analysis of flow-driven string dynamics in turbomachinery. Comput Fluids 142:109–117MathSciNetCrossRefGoogle Scholar
  26. 26.
    Takizawa K, Tezduyar TE, Otoguro Y, Terahara T, Kuraishi T, Hattori H (2017) Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA). Comput Fluids 142:15–20MathSciNetCrossRefGoogle Scholar
  27. 27.
    Takizawa K, Tezduyar TE, Terahara T (2016) Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA). Comput Fluids 141:191–200MathSciNetCrossRefGoogle Scholar
  28. 28.
    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space–time fluid mechanics computation of heart valve models. Comput Mech 54:973–986CrossRefzbMATHGoogle Scholar
  30. 30.
    Takizawa K, Tezduyar TE, Buscher A (2015) Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Comput Mech 55:1131–1141CrossRefGoogle Scholar
  31. 31.
    Takizawa K, Tezduyar TE, Asada S, Kuraishi T (2016) Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC). Comput Fluids 141:124–134MathSciNetCrossRefGoogle Scholar
  32. 32.
    Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2016) Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods. Comput Fluids. doi: 10.1016/j.compfluid.2016.11.012
  33. 33.
    Hauke G, Hughes TJR (1998) A comparative study of different sets of variables for solving compressible and incompressible flows. Comput Methods Appl Mech Eng 153(1):1–44MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Hauke G (2001) Simple stabilizing matrices for the computation of compressible flows in primitive variables. Comput Methods Appl Mech Eng 190(51):6881–6893MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Le Beau GJ, Ray SE, Aliabadi SK, Tezduyar TE (1993) SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput Methods Appl Mech Eng 104:397–422CrossRefzbMATHGoogle Scholar
  38. 38.
    Tezduyar TE, Senga M (2006) Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput Methods Appl Mech Eng 195:1621–1632MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hughes TJR, Scovazzi G, Tezduyar TE (2010) Stabilized methods for compressible flows. J Sci Comput 43:343–368. doi: 10.1007/s10915-008-9233-5 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Hughes TJR, Mallet M, Mizukami A (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54:341–355MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Hughes TJR, Mallet M (1986) A new finite element formulation for computational fluid dynamics: IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems. Comput Methods Appl Mech Eng 58:329–339MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta \) shock-capturing. Comput Mech 38:469–481CrossRefzbMATHGoogle Scholar
  43. 43.
    Tezduyar TE, Senga M (2007) SUPG finite element computation of inviscid supersonic flows with YZ\(\beta \) shock-capturing. Comput Fluids 36:147–159CrossRefzbMATHGoogle Scholar
  44. 44.
    Rispoli F, Saavedra R, Corsini A, Tezduyar TE (2007) Computation of inviscid compressible flows with the V-SGS stabilization and YZ\(\beta \) shock-capturing. Int J Numer Methods Fluids 54:695–706MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Rispoli F, Saavedra R, Menichini F, Tezduyar TE (2009) Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZ\(\beta \) shock-capturing. J Appl Mech 76:021209CrossRefGoogle Scholar
  46. 46.
    Rispoli F, Delibra G, Venturini P, Corsini A, Saavedra R, Tezduyar TE (2015) Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZ\(\beta \) shock-capturing. Comput Mech 55:1201–1209MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Löhner R, Luo H, Baum JD, Rice D (2008) Improvements in speed for explicit, transient compressible flow solvers. Int J Numer Methods Fluids 56:2229–2244CrossRefzbMATHGoogle Scholar
  48. 48.
    Löhner R, Baum JD, Mestreau E, Sharov D, Charman C, Pelessone D (2004) Adaptive embedded unstructured grid methods. Int J Numer Methods Eng 60(3):641–660CrossRefzbMATHGoogle Scholar
  49. 49.
    Löhner R, Cebral RJ, Camelli FE, Appanaboyina S, Baum JD, Mestreau EL, Soto OA (2008) Adaptive embedded and immersed unstructured grid techniques. Comput Methods Appl Mech Eng 197:2173–2197MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Hansbo A, Hansbo P, Larson MG (2003) A finite element method on composite grids based on Nitsche’s method. ESAIM Math Model Numer Anal 37(3):495–514MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Glowinski R, Pan TW, Hesla TI, Joseph DD, Periaux J (2001) A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys 169(2):363–426MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Benson DJ, Okazawa S (2004) Contact in a multi-material Eulerian finite element formulation. Comput Methods Appl Mech Eng 193(39):4277–4298CrossRefzbMATHGoogle Scholar
  54. 54.
    Puso MA, Kokko E, Settgast R, Sanders J, Simpkins B, Liu B (2015) An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects. Int J Numer Methods Eng 104(7):697–720MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Wang X, Liu WK (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193:1305–1321MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid–structure interaction. Prog Aerosp Sci 65:1–21CrossRefGoogle Scholar
  57. 57.
    Liu WK, Kim DW, Tang S (2007) Mathematical foundations of the immersed finite element method. Comput Mech 39(3):211–222MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Zhang LT, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193:2051–2067MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1):179–196MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng 86:1435–1456MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Parvizian J, Düster A, Rank E (2007) Finite cell method. Comput Mech 41(1):121–133MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Casquero H, Bona-Casas C, Gomez H (2015) A NURBS-based immersed methodology for fluid–structure interaction. Comput Methods Appl Mech Eng 284:943–970MathSciNetCrossRefGoogle Scholar
  63. 63.
    Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid–structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetCrossRefGoogle Scholar
  65. 65.
    Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New YorkCrossRefGoogle Scholar
  67. 67.
    Chen J-S, Belytschko T (2015) Meshless and meshfree methods. In: Engquist B (ed) Encyclopedia of applied and computational mathematics. Springer, Berlin, pp 886–894Google Scholar
  68. 68.
    Hauke G, Hughes TJR (1994) A unified approach to compressible and incompressible flows. Comput Methods Appl Mech Eng 113:389–396MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New YorkzbMATHGoogle Scholar
  70. 70.
    Lubliner J (1990) Plasticity theory. Macmillan Publishing Company, LondonzbMATHGoogle Scholar
  71. 71.
    Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New YorkzbMATHGoogle Scholar
  72. 72.
    Casquero H, Bona-Casas C, Gomez H (2015) A NURBS-based immersed methodology for fluid–structure interaction. Comput Methods Appl Mech Eng 284:943–970MathSciNetCrossRefGoogle Scholar
  73. 73.
    Xu F, Moutsanidis G, Kamensky D, Hsu M-C, Murugan M, Ghoshal A, Bazilevs Y (2017) Compressible flows on moving domains: stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling. Comput Fluids. doi: 10.1016/j.compfluid.2017.02.006
  74. 74.
    Von Neumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21:232–237MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Noh WF (1987) Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J Comput Phys 72:78–120CrossRefzbMATHGoogle Scholar
  76. 76.
    Hughes TJR (1980) Generalization of selective integration procedure to anisotropic and nonlinear media. Int J Numer Methods Eng 15:1413–1418MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Belytschko T, Bindeman LP (1991) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 88(3):311–340MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Zhu YY, Cescotto S (1995) Unified and mixed formulation of the 4-node quadrilateral elements by assumed strain method: application to thermomechanical problems. Int J Numer Methods Eng 38(4):685–716MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Elguedj T, Bazilevs Y, Calo VM, Hughes TJR (2008) B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput Methods Appl Mech Eng 197:2732–2762CrossRefzbMATHGoogle Scholar
  80. 80.
    Massing A, Larson MG, Logg A, Rognes ME (2014) A stabilized Nitsche fictitious domain method for the Stokes problem. J Sci Comput 61(3):604–628MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech 60:371–375MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3):305–319Google Scholar
  83. 83.
    Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89(1):141–219MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Oñate E, Owen R (2011) Particle-based methods: fundamentals and applications, vol 25. Springer, New YorkzbMATHGoogle Scholar
  86. 86.
    Idelsohn SR, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644MathSciNetCrossRefGoogle Scholar
  87. 87.
    Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2):235–394MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Benson DJ (1997) The numerical simulation of the dynamic compaction of powders. Springer, New YorkCrossRefGoogle Scholar
  89. 89.
    Giordano J, Jourdan G, Burtschell Y, Medale M, Zeitoun DE, Houas L (2005) Shock wave impacts on deforming panel, an application of fluid-structure interaction. Shock Waves 14(1–2):103–110CrossRefzbMATHGoogle Scholar
  90. 90.
    Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297CrossRefzbMATHGoogle Scholar
  91. 91.
    Coll A, Ribó R, Pasenau M, Escolano E, Perez J, Melendo A, Monros A, Gárate J (2016) GiD v.13 reference manualGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Y. Bazilevs
    • 1
  • K. Kamran
    • 1
  • G. Moutsanidis
    • 1
  • D. J. Benson
    • 4
  • E. Oñate
    • 2
    • 3
  1. 1.Department of Structural EngineeringUniversity of California, San DiegoLa JollaUSA
  2. 2.Centre Internacional de Métodes Numérics en Enginyeria (CIMNE)BarcelonaSpain
  3. 3.Universitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Livermore Software Technology CorporationLivermoreUSA

Personalised recommendations