Advertisement

Computational Mechanics

, Volume 58, Issue 4, pp 657–679 | Cite as

Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks

  • D. H. Li
  • X. ZhangEmail author
  • K. Y. Sze
  • Y. Liu
Original Paper

Abstract

In this paper, the extended layerwise method (XLWM), which was developed for laminated composite beams with multiple delaminations and transverse cracks (Li et al. in Int J Numer Methods Eng 101:407–434, 2015), is extended to laminated composite plates. The strong and weak discontinuous functions along the thickness direction are adopted to simulate multiple delaminations and interlaminar interfaces, respectively, whilst transverse cracks are modeled by the extended finite element method (XFEM). The interaction integral method and maximum circumferential tensile criterion are used to calculate the stress intensity factor (SIF) and crack growth angle, respectively. The XLWM for laminated composite plates can accurately predicts the displacement and stress fields near the crack tips and delamination fronts. The thickness distribution of SIF and thus the crack growth angles in different layers can be obtained. These information cannot be predicted by using other existing shell elements enriched by XFEM. Several numerical examples are studied to demonstrate the capabilities of the XLWM in static response analyses, SIF calculations and crack growth predictions.

Keywords

Composite laminated plates Layerwise theory Delamination Transverse crack 

Notes

Acknowledgments

Supported by National Natural Science Foundations of China (11272180 and 11502286), Tsinghua University Initiative Scientific Research Program and the “Blue Sky Young Scholar” plan of Civil Aviation University of China (205003110307).

References

  1. 1.
    Joshi S, Sun C (1985) Impact induced fracture in a laminated composite. J Compos Mater 19(1):51CrossRefGoogle Scholar
  2. 2.
    Highsmith AL, Reifsnider KL (1982) Stiffness-reduction mechanisms in composite laminates. Damage Compos Mater 775:103Google Scholar
  3. 3.
    Laws N, Dvorak GJ, Hejazi M (1983) Stiffness changes in unidirectional composites caused by crack systems. Mech Mater 2(2):123CrossRefGoogle Scholar
  4. 4.
    Laws N, Dvorak GJ (1988) Progressive transverse cracking in composite laminates. J Compos Mater 22(10):900CrossRefGoogle Scholar
  5. 5.
    Wang A, Chou P, Lei S (1984) A stochastic model for the growth of matrix cracks in composite laminates. J Compos Mater 18(3):239CrossRefGoogle Scholar
  6. 6.
    Aboudi J (1987) Stiffness reduction of cracked solids. Eng Fract Mech 26(5):637CrossRefGoogle Scholar
  7. 7.
    Gudmundson P, Weilin Z (1993) An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks. Int J Solids Struct 30(23):3211zbMATHCrossRefGoogle Scholar
  8. 8.
    Choi HY, Downs R, Chang FK (1991) A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact: Part 1-Experiments. J Compos Mater 25(8):992Google Scholar
  9. 9.
    Choi H, Chang F (1992) A model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact. J Compos Mater 26(14):2134CrossRefGoogle Scholar
  10. 10.
    O’Brien TK (1985) Delamination and debonding of materials. ASTM STP 876:282Google Scholar
  11. 11.
    Dharani L, Tang H (1990) Micromechanics characterization of sublaminate damage. Int J Fract 46(2):123CrossRefGoogle Scholar
  12. 12.
    Nairn J, Hu S (1992) The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int J Fract 57(1):1CrossRefGoogle Scholar
  13. 13.
    Berthelot JM, Le Corre JF (2000) A model for transverse cracking and delamination in cross-ply laminates. Compos Sci Technol 60(7):1055CrossRefGoogle Scholar
  14. 14.
    Swindeman MJ (2011) A regularized extended finite element method for modeling the coupled cracking and delamination of composite materials. Ph.D. thesis, University of DaytonGoogle Scholar
  15. 15.
    Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dolbow J, Moës N, Belytschko T (2001) An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng 190(51):6825MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets - Part I: Mechanical model. Int J Numer Methods Eng 53(11):2549zbMATHCrossRefGoogle Scholar
  19. 19.
    Sukumar N, Chopp D, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fract Mech 70(1):29CrossRefGoogle Scholar
  20. 20.
    Areias P, Belytschko T (2005) Non-linear analysis of shells with arbitrary evolving cracks using XFEM. Int J Numer Methods Eng 62(3):384zbMATHCrossRefGoogle Scholar
  21. 21.
    Dolbow J, Moës N, Belytschko T (2000) Modeling fracture in Mindlin-Reissner plates with the extended finite element method. Int J Solids Struct 37(48):7161zbMATHCrossRefGoogle Scholar
  22. 22.
    Zhuang Z, Cheng BB (2011) Development of X-FEM methodology and study on mixed-mode crack propagation. Acta Mech Sin 27(3):406MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Zhuang Z, Cheng B (2011) A novel enriched CB shell element method for simulating arbitrary crack growth in pipes. Sci China Phys Mech Astron 54(8):1520CrossRefGoogle Scholar
  24. 24.
    Remmers JJ, Wells GN, Borst RD (2003) A solid-like shell element allowing for arbitrary delaminations. Int J Numer Methods Eng 58(13):2013zbMATHCrossRefGoogle Scholar
  25. 25.
    Sukumar N, Huang Z, Prévost JH, Suo Z (2004) Partition of unity enrichment for bimaterial interface cracks. Int J Numer Methods Eng 59(8):1075zbMATHCrossRefGoogle Scholar
  26. 26.
    Hettich T, Ramm E (2006) Interface material failure modeled by the extended finite-element method and level sets. Comput Methods Appl Mech Eng 195(37):4753MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Nagashima T, Suemasu H (2010) X-FEM analyses of a thin-walled composite shell structure with a delamination. Comput Struct 88(9):549CrossRefGoogle Scholar
  28. 28.
    Curiel Sosa J, Karapurath N (2012) Delamination modelling of GLARE using the extended finite element method. Compos Sci Technol 72(7):788CrossRefGoogle Scholar
  29. 29.
    Asadpoure A, Mohammadi S, Vafai A (2006) Crack analysis in orthotropic media using the extended finite element method. Thin Walled Struct 44(9):1031CrossRefGoogle Scholar
  30. 30.
    Asadpoure A, Mechanics SEF, Vafai A (2006) Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elements Anal Des 42(13):1165CrossRefGoogle Scholar
  31. 31.
    Asadpoure A, Mohammadi S (2007) Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method. Int J Numer Methods Eng 69(10):2150zbMATHCrossRefGoogle Scholar
  32. 32.
    Motamedi D, Mohammadi S (2010) Dynamic analysis of fixed cracks in composites by the extended finite element method. Eng Fract Mech 77(17):3373CrossRefGoogle Scholar
  33. 33.
    Motamedi D, Mohammadi S (2012) Fracture analysis of composites by time independent moving-crack orthotropic \(\{\text{ XFEM }\}\). Int J Mech Sci 54(1):20CrossRefGoogle Scholar
  34. 34.
    Barbero E, Reddy J (1991) Modeling of delamination in composite laminates using a layer-wise plate theory. Int J Solids Struct 28(3):373zbMATHCrossRefGoogle Scholar
  35. 35.
    Chattopadhyay A, Gu H (1994) New higher order plate theory in modeling delamination buckling of composite laminates. AIAA J 32(8):1709zbMATHCrossRefGoogle Scholar
  36. 36.
    Williams TO (1999) A generalized multilength scale nonlinear composite plate theory with delamination. Int J Solids Struct 36(20):3015zbMATHCrossRefGoogle Scholar
  37. 37.
    Williams TO, Addessio FL (1997) A general theory for laminated plates with delaminations. Int J Solids Struct 34(16):2003zbMATHCrossRefGoogle Scholar
  38. 38.
    Cho M, Kim JS (2001) Higher-order zig-zag theory for laminated composites with multiple delaminations. J Appl Mech 68(6):869zbMATHCrossRefGoogle Scholar
  39. 39.
    Kim JS, Cho M (2002) Buckling analysis for delaminated composites using plate bending elements based on higher-order zig-zag theory. Int J Numer Methods Eng 55(11):1323zbMATHCrossRefGoogle Scholar
  40. 40.
    Reddy J (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca RatonGoogle Scholar
  41. 41.
    Li D, Liu Y, Zhang X (2015) An extended layerwise method for composite laminated beams with multiple delaminations and matrix cracks. Int J Numer Methods Eng 101:407–434MathSciNetCrossRefGoogle Scholar
  42. 42.
    Stolarska M, Chopp D (2003) Modeling thermal fatigue cracking in integrated circuits by level sets and the extended finite element method. Int J Eng Sci 41(20):2381zbMATHCrossRefGoogle Scholar
  43. 43.
    Stolarska M, Chopp D, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51(8):943zbMATHCrossRefGoogle Scholar
  44. 44.
    Mohammadi S (2012) XFEM fracture analysis of composites. Wiley, ChichesterGoogle Scholar
  45. 45.
    Kim JH, Paulino GH (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int J Numer Methods Eng 53(8):1903zbMATHCrossRefGoogle Scholar
  46. 46.
    Ashari SE, Mohammadi S (2010) Modeling delamination in composite laminates using XFEM by new orthotropic enrichment functions. In: IOP Conference series: materials science and engineering, vol. 10, IOP Publishing, p. 012240Google Scholar
  47. 47.
    Ashari S, Mohammadi S (2011) Delamination analysis of composites by new orthotropic bimaterial extended finite element method. Int J Numer Methods Eng 86(13):1507zbMATHCrossRefGoogle Scholar
  48. 48.
    Ashari SE, Mohammadi S (2012) Fracture analysis of FRP-reinforced beams by orthotropic XFEM. J Compos Mater 46(11):1367CrossRefGoogle Scholar
  49. 49.
    Zhuang Z, Liu Z, Cheng B, Liao J (2014) Extended finite element method., Tsinghua University Press Computational Mechanics SeriesAcademic Press, New YorkGoogle Scholar
  50. 50.
    Saouma V, Ayari M, Leavell D (1987) Mixed mode crack propagation in homogeneous anisotropic solids. Eng Fract Mech 27(2):171CrossRefGoogle Scholar
  51. 51.
    Dolbow J (1999) An extended finite element method with discontinuous enrichment for applied mechanics. Master’s Thesis, Northwestern UniversityGoogle Scholar
  52. 52.
    Aliabadi M, Sollero P (1998) Crack growth analysis in homogeneous orthotropic laminates. Compos Sci Technol 58:1697CrossRefGoogle Scholar
  53. 53.
    Ghorashi S, Mohammadi S, Sabbagh-Yazdi S (2011) Orthotropic enrichment element free Galerkin method for fracture analysis of composite. Eng Fract Mech 78:1906CrossRefGoogle Scholar
  54. 54.
    Shi F, Gao F, Yang Y (2014) Application of extended finite element method to study crack propagation problems of orthotropic rock mass. Rock Soil Mech 35(4):1203Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.College of Aeronautical EngineeringCivil Aviation University of ChinaTianjinChina
  3. 3.Department of Mechanical EngineeringThe University of Hong KongHong KongChina

Personalised recommendations