Computational Mechanics

, Volume 58, Issue 4, pp 619–633 | Cite as

Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method

  • Meisam SoleimaniEmail author
  • Peter Wriggers
  • Henryke Rath
  • Meike Stiesch
Original Paper


In this paper, a 3D computational model has been developed to investigate biofilms in a multi-physics framework using smoothed particle hydrodynamics (SPH) based on a continuum approach. Biofilm formation is a complex process in the sense that several physical phenomena are coupled and consequently different time-scales are involved. On one hand, biofilm growth is driven by biological reaction and nutrient diffusion and on the other hand, it is influenced by fluid flow causing biofilm deformation and interface erosion in the context of fluid and deformable solid interaction. The geometrical and numerical complexity arising from these phenomena poses serious complications and challenges in grid-based techniques such as finite element. Here the solution is based on SPH as one of the powerful meshless methods. SPH based computational modeling is quite new in the biological community and the method is uniquely robust in capturing the interface-related processes of biofilm formation such as erosion. The obtained results show a good agreement with experimental and published data which demonstrates that the model is capable of simulating and predicting overall spatial and temporal evolution of biofilm.


Biofilm Multi-physics Smoothed particle hydrodynamics Fluid-solid interaction 



The authors sincerely acknowledge the financial support of this research by Ministry of Science and Technology ,Nidersachsen, Germany in the context of MARIO graduate program in the Institute Of Continuum Mechanics (IKM) at Leibniz university of Hannover.

Supplementary material

466_2016_1308_MOESM1_ESM.avi (19.2 mb)
Supplementary material 1 (avi 19646 KB)


  1. 1.
    Rittmann BE, McCarty PL (1980) Model of steady-state-biofilm kinetics. Biotechnol Bioeng 22:2343–2357CrossRefGoogle Scholar
  2. 2.
    Wanner GW (1986) A multispecies biofilm model. Biotechnol Bioeng 28(3):314–328CrossRefGoogle Scholar
  3. 3.
    Picioreanu C, Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122CrossRefGoogle Scholar
  4. 4.
    Picioreanu C, Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study, Biotechnol Bioeng 69:504–515CrossRefGoogle Scholar
  5. 5.
    Picioreanu C, Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218CrossRefGoogle Scholar
  6. 6.
    Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789zbMATHCrossRefGoogle Scholar
  7. 7.
    Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129(1):57–73zbMATHCrossRefGoogle Scholar
  8. 8.
    Kreft J-U, Booth G (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287CrossRefGoogle Scholar
  9. 9.
    Kreft J-U, Picioreanu C (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912CrossRefGoogle Scholar
  10. 10.
    Kreft J-U, Picioreanu C, Wimpenny JWT (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040CrossRefGoogle Scholar
  11. 11.
    Tang Y, Valocchi AJ (2013) An improved cellular automaton method to model multispecies biofilms. Water Res 47:5729–5742CrossRefGoogle Scholar
  12. 12.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57(6):718–731CrossRefGoogle Scholar
  13. 13.
    Noguera DR, Pizarro G, Stahl DA, Rittmann BE (1999) Simulation of multispecies biofilm development in three dimensions. Water Sci Technol 39(7):123–130CrossRefGoogle Scholar
  14. 14.
    Fujikawa H, Matsushita M (1989) Fractal growth of bacillus subtilis on agar plates. J Phys Soc Jpn 58:3875–3878CrossRefGoogle Scholar
  15. 15.
    Picioreanu C, Kreft J-U, Van Loosdrecht MCM (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70(5):3024–3040CrossRefGoogle Scholar
  16. 16.
    Eberl HJ, Parker DF, Van Loosdrecht MCM (2001) A new deterministic spatio-temporal continuum model for biofilm development. J Theor Med 3:161–175zbMATHCrossRefGoogle Scholar
  17. 17.
    Lardon LA, Merkey BV, Martins S, D\({\ddot{o}}\)tsch A, Kreft JU, Picioreanu C, Wimpenny JWT, Smets BF (2011) iDynoMiCS: next-generation individual-based modeling of biofilms. Environ Microbiol 13(9):2416–2434Google Scholar
  18. 18.
    Cumsille P, Asenjo JA, Conca Carlos (2014) A novel model for biofilm growth and its resolution by using the hybrid immersed interface-level set method. Comput Math Appl 67:34–51MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dockery J, Klapper I (2001) Finger formation in biofilm layers. SIAM J Appl Math 62(3):853–869MathSciNetzbMATHGoogle Scholar
  20. 20.
    Cogan N (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70:800–819MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Jones GW, Chapman SJ (2012) Modeling growth in biological materials. SIAM Rev 54(1):52–118MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobiol 8:301–309CrossRefGoogle Scholar
  23. 23.
    Kuhl E, Holzapfel GA (2007) A continuum model for remodeling in living structures. J Mater Sci 42:8811–8823CrossRefGoogle Scholar
  24. 24.
    Ambrosi D, Ateshian GA, Arruda EM, Ben M, Amar SC, Cowin J, Dumais A, Goriely GA, Holzapfel JD, Humphrey R, Kemkemer E, Kuhl J, Ma JE, Olberding LA, Taber R Vandiver, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59:863–883MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Taber LA (1995) Biomechanics of growth, remodeling and morphogenesis. Appl Mech Rev 48:487–545CrossRefGoogle Scholar
  26. 26.
    Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. Trans ASME J Biomech Eng 120:348–354CrossRefGoogle Scholar
  27. 27.
    Bakke R (1986) Biofilm deattachment, PhD thesis, Montana State UniversityGoogle Scholar
  28. 28.
    Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617CrossRefGoogle Scholar
  29. 29.
    Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensionalmodel of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218CrossRefGoogle Scholar
  30. 30.
    Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103(1):92–104CrossRefGoogle Scholar
  31. 31.
    Boel M, Moehle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186CrossRefGoogle Scholar
  32. 32.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1998) Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol Bioeng 57(5):536–544CrossRefGoogle Scholar
  33. 33.
    Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1998a) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng 65:83–92CrossRefGoogle Scholar
  34. 34.
    Alpkvist E, Klapper I (2007) Description of mechanical response including detachment using a novel particle model of biofilm/flow interaction. Water Sci Technol 55(89):265–273CrossRefGoogle Scholar
  35. 35.
    Zhijie X, Meakin P, Tartakovsky A, Scheibe TD (2011) Dissipative-particle-dynamics model of biofilm growth. Phys Rev E 83:066702CrossRefGoogle Scholar
  36. 36.
    Xavier JD, van Picioreanu C (2005a) A general description of detachment for multidimensional modeling of biofilms. Biotechnol Bioeng 91(6):651–669CrossRefGoogle Scholar
  37. 37.
    Duddu R, Bordas S, Chopp D, Moran B (2008) A combined extended finite element and level set method for biofilm growth. Int J Numer Methods Eng 74:848–870MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375zbMATHCrossRefGoogle Scholar
  39. 39.
    Lucy LB (1977) Numerical approach to the testing of the fission hypothesis. Astron J 82:1013CrossRefGoogle Scholar
  40. 40.
    Cleary PW, Monaghan JJ (1999) Conduction modeling using smoothed particle hydrodynamics. J Comput Phys 148:227–264MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Zhu Yi, Fox PJ (2001) Smoothed particle hydrodynamics model for diffusion through porous media. Transp Porous Media 43:441–471CrossRefGoogle Scholar
  42. 42.
    Aristodemo F, Federico I, Veltri P (2010) Two-phase SPH modeling of advective diffusion processes. Environ Fluid Mech 10:451–470CrossRefGoogle Scholar
  43. 43.
    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406zbMATHCrossRefGoogle Scholar
  44. 44.
    Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJ (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27CrossRefGoogle Scholar
  45. 45.
    Kristof P, Benes B, Krivanek J, Stava O (2009) Hydraulic erosion using smoothed particle hydrodynamics. Comput Gr Forums 28:219–228CrossRefGoogle Scholar
  46. 46.
    Tartakovsky AM, Meakin P, Scheibe TD (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222:654–672MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662zbMATHCrossRefGoogle Scholar
  48. 48.
    Libersky Larry D, Petschek Albert G, Carney Theodore C, Hipp Jim R, Allahdadi Firooz A (1993) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75zbMATHCrossRefGoogle Scholar
  49. 49.
    Simo JC, Pister KS (1984) Remarks on rate constitutive equation for finite deformation problems: computational implications. Comput Methods Appl Mech Eng 46:201–205zbMATHCrossRefGoogle Scholar
  50. 50.
    Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluidstructure interaction by SPH. Comput Struct 85:879–890CrossRefGoogle Scholar
  51. 51.
    Boffin HMJ, Anzer U (1994) Numerical studies of wind accretion using SPH. Astron Astrophys 284:1026–1036Google Scholar
  52. 52.
    Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical modeling of bio-systems. Springer, Berlin, pp 1–44Google Scholar
  53. 53.
    Hauser M, Vafai K (2013) Analysis of the multidimensional effects in biofilms. Int J Heat Mass Transf 56:340–349CrossRefGoogle Scholar
  54. 54.
    Qing Y, Fish J (2002) Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales. Int J Solids Struct 39:6429–6452zbMATHCrossRefGoogle Scholar
  55. 55.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 3:543–574CrossRefGoogle Scholar
  56. 56.
    Volokh KY (2006) Stresses in growing soft tissues. Acta Biomater 2:493–504CrossRefGoogle Scholar
  57. 57.
    Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Li S, Liu WK (2002) Mesh-free and particle methods and their applications. Appl Mech 55(1):1–34CrossRefGoogle Scholar
  59. 59.
    Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180:1811–1820MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075MathSciNetCrossRefGoogle Scholar
  61. 61.
    Wriggers P (2008) Non-linear finite element method. Springer, HeidelbergzbMATHGoogle Scholar
  62. 62.
    Valizadeh A, Monaghan JJ (2015) A study of solid wall models for weakly compressible SPH. J Comput Phys 300:5–19MathSciNetCrossRefGoogle Scholar
  63. 63.
    Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311zbMATHCrossRefGoogle Scholar
  65. 65.
    Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389zbMATHCrossRefGoogle Scholar
  66. 66.
    Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng 80(3):289–296CrossRefGoogle Scholar
  67. 67.
    Stewart PS (2012) Convection around biofilms. J Bio-adhes Biofilm Res 28(2):187–198CrossRefGoogle Scholar
  68. 68.
    Hermansson Malte (1999) The DLVO theory in microbial adhesion. Colloids Surf B 14:105–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Meisam Soleimani
    • 1
    Email author
  • Peter Wriggers
    • 1
  • Henryke Rath
    • 2
  • Meike Stiesch
    • 2
  1. 1.Institute of Continuum MechanicsLeibniz Universit” at HannoverHannoverGermany
  2. 2.Hannover Medical SchoolHannoverGermany

Personalised recommendations